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Abstract. One task that is often discussed in a computer vision is the
mapping of an image from one domain to a corresponding image in an-
other domain known as image-to-image translation. Currently there are
several approaches solving this task. In this paper, we present an enhance-
ment of the UNIT framework that aids in removing its main drawbacks.
More specifically, we introduce an additional adversarial discriminator on
the latent representation used instead of VAE, which enforces the latent
space distributions of both domains to be similar. On MNIST and USPS
domain adaptation tasks, this approach greatly outperforms competing
approaches.

1 Introduction

The problem of mapping images between different domains can be tackled in
both a supervised and an unsupervised manner. In the supervised approach,
one needs pairs of corresponding images in both domains to learn the model. In
real-world datasets, these pairs have to be created somehow, which leads to a
very challenging problem. On the other hand, the unsupervised approach is used
when working with independent unpaired sets of images. The difficulty lies in
the fact that there are no paired examples demonstrating how the images should
be mapped to each other. Hence, the correctness of an image mapped from one
domain to another is usually estimated using an implicitly learned probability
distribution in the second domain.

From a general point of view the problem is a part of transfer learning [1]
which focuses on storing knowledge gained when solving one problem and ap-
plying it to a different but related problem. Transfer learning methods are often
used in image processing where one suffers from lack of labeled data, computa-
tional difficulties, differences in data representation, color settings, etc.

We consider a scenario where two image domains differ in feature represen-
tations but the target supervised prediction task is the same. Specifically, we
assume that both domains are rich with data but only one is equipped with
labels. Transfer learning approaches enable us to modify the domain without
labels in such a manner that allows it to be represented in the same way as the
domain with labels, taking advantage of an already trained prediction model.

In our research we propose a novel Latent Space Translation Network (LST-
Net) based on shared latent space representation and adversarial training in-
spired by the Unsupervised Image-to-image Translation (UNIT) framework [2].
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However, we do not use a variational autoencoder (VAE) as a component and in-
stead introduce another adversarial discriminator which attempts to guess from a
latent space representation of an image which domain it is from. This approach
enforces the encoders from source domains to latent space representations to
yield the same distribution for both domains. For this to work one needs a
shared latent space assumption, which means that a pair of corresponding im-
ages in the two domains can be mapped to the same latent representation in a
shared-latent space, see also [3].

1.1 Related Work

Many recent works [3, 4, 2, 5] are primarily focused on unsupervised domain
adaptation in image processing using GANs [6]. In domain adaptation, rich
labeled data are leveraged on a source domain to achieve performance on a
target domain regardless of unlabeled or poorly labeled data.

The architecture called CoGAN [3] applies GANs to the domain transfer
problem by training two coupled GANs to generate the source and target im-
ages, respectively. The approach achieves a domain invariant feature space by
tying the high-level layer parameters of the two GANs learned a joint distribu-
tion without any tuple of corresponding images with just samples drawn from
the marginal distributions and shows that the same noise input can generate a
corresponding pair of images from these two distributions.

Recently it was shown that generative adversarial networks combined with
cycle-consistency constraints [7] are very effective in mapping data between dif-
ferent domains, even without the use of aligned data pairs. A very successful
model in particular is the UNIT framework [2]. Each image domain is modeled
using a VAE-GAN. The adversarial training objective interacts with a weight-
sharing constraint, which enforces a shared latent space to generate correspond-
ing images in two domains, while the VAEs relate translated images with input
images in the respective domains.

2 Translation Network

Let us denote by X1 the source image domain with associated labels in some
label space Y. Similarly, let X2 be the target image domain, but with unknown
labels. The goal of the domain adaptation is to learn the predictive function
f : X2 → Y in the target domain by leveraging the information from the source

domain. Therefore, we consider a source domain dataset {(x(i)
1 , y(i)) ∈ X1 ×

Y | i = 1, . . . , n1} consisting of image-label pairs and a target domain dataset

{x(j)
2 ∈ X2 | i = 1, ..., n2} with no labels. In the unsupervised approach to

domain adaptation one starts by learning the mapping g : X2 → X1 based on
independent datasets in X1 and X2. Then the desired prediction function is
given by the composition of g with a predictive function h in X1, f = h ◦ g,
which can be estimated because we have labels in the source domain dataset.

Let us now focus on finding a suitable function g. Using the latent space
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assumption one can construct such a function as the composition of the encoder
function E2 : X2 → L, mapping images from target space X2 to shared latent
space L, with the generator function G1 : L → X1 mapping points in the shared
latent space L to source space X1. In order to be able to train these functions
in an unsupervised manner it is useful to have an encoder E1 : X1 → L and a
generator G2 : L → X2 which enables one to apply cycle consistency constraints,
[7], given by x1 = G1(E1(x1)), x2 = G2(E2(x2)), x1 = G1(E2(G2(E1(x1)))),
x2 = G2(E1(G1(E2(x2)))).

Similarly to [2] the LSTNet itself consists of six subnetworks including two
domain encoders E1, E2, two image generators G1, G2 and two domain adver-
sarial discriminators D1, D2. The encoder is responsible for mapping an input
image to a code in latent space L, which is taken by the generator which then
reconstructs the image. Discriminators are trained to differentiate between real
and fake images for each domain, whereas the generators are trained to fool
them.

Since we assume that there is one-to-one correspondence between images in
both domains we may expect that the probability distributions P(E1(x1)) and
P(E2(x2)) of points in the shared latent space L mapped from X1 and from X2

are similar. To achieve this we introduce another adversarial discriminator Dl

trying to differentiate between points from source and target domains based on
their latent space representations. This eliminates one of the drawbacks of the
UNIT framework which is the Gaussian latent space assumption enforced by
VAE components.

Furthermore, in order to support the latent space assumption, we assume
shared intermediate representations of both encoders E1, E2 and generators
G1, G2. Hence, we have E1 = Es ◦E∗1 and E2 = Es ◦E∗2 , where Es is the shared
component of both encoders E1, E2 and E∗1 and E∗2 are the custom components
of E1 and E2, respectively. A similar composition holds for the generators, i.e.
G1 = G∗1 ◦ Gs and G2 = G∗2 ◦ Gs, where Gs is the shared component of both
generators G1, G2, and G∗1 and G∗2 are the custom components of G1 and G2,
respectively. A schematic depiction of the entire network is given in Figure 1.

2.1 Training

For the training we may identify three subnetworks: AN1 = (E2, G1, D1), AN2 =
(E1, G2, D2), ANl = (E1, E2, Dl). AN1 is responsible for distinguishing real
images sampled from X1 from images sampled from X2 and translated to X1 by
the mapping G1 ◦ E2. Analogously, AN2 is responsible for distinguishing real
images sampled from X2 from images sampled from X1 and translated to X2 by
the mapping G2 ◦E1. ANl is trying to find out which source domain the current
point in the latent space corresponds to. Therefore, it should output 1 (true) for
images sampled from X1 mapped by E1 into L and 2 (false) for images sampled
from X2 mapped by E2.

It should be mentioned that in our case none of the three subnetworks are a
proper GAN. This is because they are not generative - we never let the generators
transform random inputs into images.
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Fig. 1: Architecture of proposed LSTNet with MNIST-USPS example.

The learning consists of the simultaneous optimization of objective functions
corresponding to adversarial training of the three networks AN1, AN2, ANl and
objective functions corresponding to four cycle consistency conditions: idX1

=
G1 ◦E1, idX2 = G2 ◦E2, idX1 = G1 ◦E2 ◦G2 ◦E1, and idX2 = G2 ◦E1 ◦G1 ◦E2.
Hence, we want to minimize the weighted sum of particular objectives

J(E1, E2, G1, G2, D1, D2, Dl) = w1JAN1
(E2, G1, D1) + w2JAN2

(E1, G2, D2)

+ wlJANl
(E1, E2, Dl) + w3JCC1

(E1, G1) + w4JCC2
(E2, G2)

+ w5JCC3
(E1, E2, G1, G2) + w6JCC4

(E1, E2, G1, G2), (1)

where objective functions for adversarial networks are

JAN1
(E2, G1, D1) = Ex1∼PX1

logD1(x1) + Ex2∼PX2
log

(
1−D1(G1(E2(x2)))

)
,

JAN2
(E1, G2, D2) = Ex2∼PX2

logD2(x2) + Ex1∼PX1
log

(
1−D2(G2(E1(x1)))

)
,

JANl
(E1, E2, Dl) = Ex1∼PX1

logDl(E1(x1)) + Ex2∼PX2
log

(
1−Dl(E2(x2))

)
and objective functions for cycle consistency conditions are given by MAE:

JCC1
(E1, G1) = Ex1∼PX1

‖x1 −G1(E1(x1))‖1,
JCC3

(E1, E2, G1, G2) = Ex1∼PX1
‖x1 −G1(E2(G2(E1(x1))))‖1,

and analogously for JCC2(E2, G2) and JCC4(E1, E2, G1, G2).
The training represents a two team adversarial game, where the first team

consists of encoders and generators, and the second team consists of discrim-
inators. The optimization is done via alternating gradient descent, where the
first step is updating the discriminators D1, D2, and Dl, and the second step is
updating the encoders E1, E2 and generators G1, G2.
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3 Experiments

We performed the experiments on benchmark datasets MNIST [8] and USPS
[9] devoted to digit classification, which were used in previous related studies
[2, 3, 10]. For both domains, we used the entire training sets, i.e. 60000 training
images for MNIST and 7291 for USPS. Test sets contain 10000 MNIST images
and 2007 USPS images. Both datasets consist of grayscale images, the size of
MNIST images is 28x28 and of USPS is 16x16.

In the first step, the LSTNet was trained using images from both domains
without knowledge of labels. As an optimizer we used Adam with a learning rate
of 0.0001 and moment estimates exponential decays 0.8 and 0.999. Mini-batches
were of size 64 images from each domain. We also used data augmentation with
randomly rotated training images by a maximum of 10 degrees, rescaled by a
random number in the range of [0.9, 1.1], and shifted randomly by a maximum of
2 pixels in each direction. The weights corresponding to the objective function
(1) were chosen to be w1, w2 = 20, wl = 30, and w3, w4, w5, w6 = 100. A
description of the architecture details is given in Table 1.

Layer Encoders Shared

1 CONV-(N64, K7, S1), BatchNorm, LeakyReLU No
2 CONV-(N128, K5, S2), BatchNorm, LeakyReLU No
3 CONV-(N256, K3, S2/S1), BatchNorm, LeakyReLU No
4 CONV-(N512, K3/K2-V, S1), BatchNorm, LeakyReLU No
5 CONV-(N256, K3, S1), BatchNorm, LeakyReLU Yes
6 CONV-(N128, K3, S3), BatchNorm, LeakyReLU Yes

Layer Generators Shared

1 DCONV-(N128, K3, S1), BatchNorm, LeakyReLU Yes
2 DCONV-(N256, K3, S1), BatchNorm, LeakyReLU Yes
3 DCONV-(N512, K3/K2-V, S1), BatchNorm, LeakyReLU No
4 DCONV-(N256, K3, S2), BatchNorm, LeakyReLU No
5 DCONV-(N128, K5, S2/S1), BatchNorm, LeakyReLU No
6 DCONV-(N64, K7, S1), BatchNorm, LeakyReLU No
7 DCONV-(N1, K1, S1), TanH No

Layer Discriminators Shared

1 CONV-(N64, K3, S1), LeakyReLU, MaxPooling-(K2, S1) No
2 CONV-(N128, K3, S1), LeakyReLU, MaxPooling-(K2, S2/S1) No
3 CONV-(N256, K5, S1), LeakyReLU, MaxPooling-(K2, S2) No
4 CONV-(N512, K3/K2-V, S1), LeakyReLU, MaxPooling-(K2, S2) No
5 FC-(N1), Sigmoid No

Layer Latent Discriminator Shared

1 CONV-(N256, K3, S1), LeakyReLU, MaxPooling-(K2, S1) No
2 CONV-(N512, K3, S1), LeakyReLU, MaxPooling-(K2, S2) No
3 CONV-(N256, K3, S1), LeakyReLU, MaxPooling-(K2, S1) No
4 FC-(N1), Sigmoid No

Table 1: Architecture details of the translation network. Abbrevia-
tion: DCONV=transposed convolutional layer, FC=fully connected layer,
N=neurons, K=kernel size, S=stride size, V= ”valid” padding instead of de-
fault ”same” padding. Slash is used to distinguish the first and second domain.

In the second step, the classification model was trained on the MNIST train-
ing dataset in a supervised manner (accuracy achieved on a test set was 0.9941).
Then the USPS test dataset was translated into the MNIST domain using a
previously trained translation network. The classification model was tested on
this translated dataset and achieved an accuracy of 0.9701. Similarly, we trained
a classifier on USPS (accuracy 0.9751) and then evaluated it on the translated
MNIST test dataset (accuracy 0.9761). The comparison of our results and re-
sults presented in [3, 2, 10] is given in Table 2. We achieved significantly better
results in both the USPS to MNIST and the MNIST to USPS translations.
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Method CoGAN [3] UNIT [2] DeepJDOT [10] Proposed LSTNet

USPS → MNIST 0.9315 0.9358 0.964 0.9701
MNIST → USPS 0.9565 0.9597 0.957 0.9761

Table 2: Comparison of accuracies of methods used in unsupervised domain
adaptation.

4 Conclusion

We propose LSTNet as a novel framework based on shared latent space represen-
tation and adversarial training. Our work is inspired by the UNIT framework.
However, in contrary to UNIT, instead of using VAEs we introduce an addi-
tional adversarial discriminator on the latent representation which forces the
latent space distributions from both domains to be similar. We experimentally
showed an interesting performance enhancement of the proposed network in the
domain adaptation of MNIST and USPS datasets. In future work we would like
to focus on the use of LSTNet on other domain adaptation tasks.
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