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Abstract. Recurrent neural networks (RNNs) are state-of-the-art in several se-
quential learning tasks, but they often require considerable amounts of data to gen-
eralise well. For many time series forecasting (TSF) tasks, only a few dozens of
observations may be available at training time, which restricts use of this class of
models. We propose a novel RNN-based model that directly addresses this prob-
lem by learning a shared feature embedding over the space of many quantised time
series. We show how this enables our RNN framework to accurately and reliably
forecast unseen time series, even when there is little to no training data available.

1 INTRODUCTION

Deep and recurrent neural networks (RNNs) have achieved great success across a wide
range of sequential learning tasks, such as machine translation, speech recognition and
time series forecasting (TSF) [1]. However, RNNs are ultra-parameterised models that
overfit without sufficient data at hand, making them unfit to solve tasks where few data
are available. We propose a novel RNN approach to infer full predictive distributions
for TSF tasks where there is little to no training data at hand, respectively referred
to as few-shot and zero-shot learning. We achieve this by learning a shared feature
representation across multiple forecasting tasks, then transferring this knowledge to
help predict unseen time series, even in observation poor environments. We show that
our approach outperforms other (widely used) approaches across a range of metrics as
well as providing a framework to visualise and interpret the embedding learnt by the
neural network.

Related work. There is a rich literature associated with transfer learning and few-
shot learning, especially in the Computer Vision community, where pre-trained models
such as VGGNet, ImageNet and AlexNet are regularly used as either transferrable fea-
ture extractors, followed by a simpler classifiers, or as initial priors before fine-tuning a
model.

However, to the best of the authors’ knowledge, the transfer learning literature for
time series forecasting is significantly more scarce and often limited to evaluations
solely based on the residuals of point forecasts. Full probabilistic forecasts are, how-
ever, desirable as this enables practitioners to incorporate predictive uncertainty in their
decision-making processes. This is often achieved using Gaussian Processes (GPs) [2],
non-parametric probabilistic models that are known to generalise well even with little
data.
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2 METHODOLOGY

Our strategy consists in inferring a joint Memory-endowed Ordinal Regression Deep
Neural Network (MOrdReD) [3] over a collection of (auxiliary) time series. This results
in a cross-task feature embedding that we use as a basis to forecast unseen time series
even with scarce data. We briefly summarise this model below, but refer the reader to
[3] for a more detailed explanation.

2.1 Memory-endowed Ordinal Regression Deep Neural Networks

MOrdReD is an ordinal regression approach to time series forecasting that has been
shown to achieve long-term, reliable performance. In the ordinal setting, real-valued
time series observations are firstly discretised into M (normally equal-sized) subinter-
vals C = {Ck}Mk=1 and encoded using a 1-of-M scheme. Such discrete symbol se-
quences have been most efficiently dealt with in NLP tasks by deep recurrent neural
networks and in particular sequence-to-sequence extensions of the Long Short-Term
Memory (LSTM) model [1].

Sequence-to-sequence models fit together two LSTM layers, an encoder f (enc) and
a decoder f (dec). In the first stage of the model’s forward pass the encoder sequentially
scans P measurements of the time series X(τ−1) = (xτ−P , . . . ,xτ−1) and summarises
them as temporal characteristics h(dec)

0 ,C
(dec)
0 . These are then fed as initial states to the

LSTM decoder, which iteratively produces an output sequence. The (t+ 1)-th element
of the output sequence, x̂t+1, is then given by:

(h
(dec)
0 ,C

(dec)
0 ) = f (enc)(X(τ−1)),

x̂t+1 = Softmax
(
f (dec)(h

(dec)
t−1 ,C

(dec)
t−1 ,xt)

)
.

The softmax output x̂t+1 can be interpreted as both a categorical distribution over the
set of ordinal bins, C = {Ck}Mk=1, at time t + 1, and as a piece-wise uniform over the
original time series range. Output sequences are computed by iteratively feeding back
x̂t+1 into the model and predictive posterior distributions can readily be approximated
through Monte Carlo Dropout [4].

2.2 A General Unified Model for time series forecasting

Our GUM approach is based on inferring a shared representation space of time se-
ries. This shared embedding is learnt by fitting a joint MOrdReD model over a sin-
gle compilation dataset Xaux of 20 different auxiliary time series which are assumed
to possess sufficient observations for training. The datasets were drawn from a vari-
ety of application domains, and further detail is given in https://github.com/
bperezorozco/ordinal_tsf.

Crucially, our ordinal regression cross-task embedding is learnt over symbolic pat-
terns that are invariant to the original scale of the time series, as all auxiliary time series
are quantised independently, but with the same number of bins M = 150. A variety
of shapes and motifs from the auxiliary datasets are thus encoded in a feature space of
ordinal bin motifs. We analyse this cross-task embedding in Section 3.2.
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We note that the quantiser proposed in [3] requires prior knowledge of the time se-
ries range. With scarce data, the observed range could change within short predictive
horizons. We handle this with a simple linear heuristic that estimates the range bound-
aries within a predictive horizon Ph. Given the largest first-order finite difference of
the time series, Δmax, our linear heuristic approximates the boundaries X̃min, X̃max =
Xmin − PhΔmax,Xmax + PhΔmax. Future work for improving this estimation includes
relating it to Lipschitz constant inference [5].

3 EXPERIMENTS

3.1 Task 1: Zero-shot forecasting

We first assess the model’s performance at zero-shot time series forecasting.
Data. We used two dataset collections in our experiments. The first was used to fit
our GUM ordinal regression neural network, and contains 20 varied auxiliary datasets
drawn from [6] with outputs evenly quantised over M = 150 bins. A copy of our auxil-
iary datasets is provided in https://github.com/bperezorozco/ordinal_
tsf. The second collection is our test data, which corresponds to the yearly-frequency
segment of the M4 competition dataset [7]. We drew 150 excerpts that had no missing
data (no interpolation needed) and that had at least 36 observations available.
Task. Every M4 time series was split into T = 21 timesteps, assumed to be observed,
and Ph = 15 timesteps for prediction. For our baselines, each segment represents the
training and test data, respectively; for GUM, the quantised 21-sample excerpt is fed
as the encoder input sequence, before the decoder computes the forecast with horizon
Ph = 15. Importantly, no neural network parameters are updated whilst scanning the
21-sample sequence.
Baselines. We compared our GUM neural network against two popular models: Gaus-
sian Process Regression (GPR) [2] and state-space AR(p) models [8]. Detailed deriva-
tions of both methods can be found in the given references. In the case of GPR, we
fitted two instances for every time series: one with the Mátern 5/2 kernel and one with
the Rational Quadratic kernel, both commonly found in the literature to model a wide
range of physical phenomena. In the case of State-space AR(p), we fitted two instances
with lookback p = 3, 4.
Metrics. We evaluated models using three metrics: (1) the Negative log-likelihood
(NLL): through this we assess how well predictive densities capture the ground truth
prediction; (2) The root mean squared error (RMSE): to measure the mean predic-
tive accuracy of the models; and (3) Quantile-Quantile (QQ) distance: QQ plots are
graphical tools used to assess how well predictive densities match empirical probabil-
ities. We summarise how well calibrated predictive distributions are through the QQ
distance, defined as the deviation between the identity and the obtained QQ plot. We
refer the reader to [3] for full details.
Results. We present our results in Table 1. The Table is divided into two sections. On
the left side, we show the percentage of datasets in which our GUM neural network
outperforms each of our benchmarks for every metric. We show that across all metrics,
our model consistently performs better than all baselines for the majority of cases. On
the right side of Table 1, we provide the average rank of our models. Ranks from 1
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(%) GUM outp. Zero-shot rank Few-shot rank

AR3 AR4 M5/2 RQ GUM GP AR GUM Mor GP AR

NLL 65 70 59 62 1.76 2.04 2.20 1.1 3.1 3.2 2.6
RMSE 64 68 54 58 1.83 2.01 2.15 1 3.1 2.9 3
QQD 74 75 67 67 1.65 2.01 2.34 1.8 2.3 3 2.9

Table 1: Left: percentage of unseen evaluation datasets where GUM outperforms each of our baselines in the
zero-shot setting. Centre: average rank achieved by each model in the zero-shot setting. Ranks 1 (best) to 3
were assigned to each model for each dataset and metric. Right: average rank achieved by each model in the
few-shot setting. Ranks 1 (best) to 4 were assigned to each model for each dataset and metric.

(best) to 3 (worst) were assigned for every metric, dataset and model and averaged
across all M4 evaluation datasets. In the case of GPR and AR(p), the instance with the
best performance across kernels or model order p was chosen. This metric shows that,
on average, we expect GUM to outperform all other models; and additionally, when it
does not, it can still be expected to come as a second competitor.

3.2 Cross-task feature embedding analysis

We now provide a visual analysis of the cross-task feature embedding learnt by GUM.
We first compute h

(dec)
0 (as described in Section 2) for a random sample of auxiliary

time series excerpts, in addition to all M4 evaluation input sequences. Intra-group min-
imum variance clusters are then computed through Ward’s agglomerative clustering.
Results in Figures 1 and 2 are provided for K = 36 clusters, which yields the largest
silhouette score for values between 5 and 50.

We show the resulting frame clusters in Figure 1, observing that those in red are
only seen by our GUM network at testing time. We note that the excerpts mainly group
towards the right-hand edge of each subplot, i.e. every cluster contains patterns with
diverse features (such as degree of smoothness, number of optima and rate of change)
that fire similar activations, which then produce similar forecasts at the output layer.

In Figure 2 we show the 2D UMAP [9] representation of each frame’s feature vec-
tor h(dec)

0 , colour-coded by cluster id. Bluer and redder markers represent time series
clusters that converge to lower- and higher-valued bins at the last timestep, respectively.
The smooth colour degradation from left to right, with blue clusters grouping at the
left-hand edge and red clusters towards the right, suggests that our model is learning an
approximate ordering over ordinal bins.

3.3 Task 2: Few-shot forecasting

We now assess model performance in the few-shot setting.
Data. We use the same 20 auxiliary datasets from Section 3.1 to train GUM. For
the testing phase, we now use 10 series of the monthly-frequency segment of the M4
dataset, those with no missing observations and with at least 1500 measurements avail-
able for model inference. All datasets are quantised using M = 150 bins.
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Fig. 1: Sample excerpt groups resulting from clustering the LSTM encoder activations over both auxiliary (in
blue) and M4 unseen time series (in red). Frames in the same cluster trigger similar LSTM activations and
thus produce similar forecasts.

Fig. 2: 2D UMAP representation of LSTM encoder activations, where each cluster is colour-coded by the
average value of the last timestep across its excerpts. Bluer and redder markers represent time series excerpts
that converge to lower- and higher-valued bins at the last timestep, respectively. The colour degradation from
left to right suggests that GUM is implicitly learning a quasi-ordering over ordinal bins.
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GUM setup. In this setting, we pre-train a number of GUM models over the aux-
iliary datasets with different hyperparameters: hidden units nh ∈ {64, 128, 256, 512},
dropout rate θdrop ∈ {0.25, 0.5} and L2 regularisation constant λ ∈ {10−5, 10−6, 10−7,
10−8}. These serve as initialisation parameters for each M4 time series. Models are
trained for up to a further 50 epochs with early stopping and the best hyperparameters
for each dataset are chosen by grid search over a validation segment.
Task, baselines and metrics. We forecast Ph = 100 measurements ahead from a
lookback window of P = 50, using the same baselines and metrics from Section 3.1,
in addition to a naive MOrdReD baseline that has not been pre-trained, i.e. is initialised
from scratch and allowed twice as many epochs, also with early stopping. The AR(p)
baseline’s lookback is chosen from p ∈ {3, 6, 12, 18}.
Results. We note that our GUM neural network consistently outperforms our base-
lines across all metrics, as shown in Table 1. Crucially, GUM also outperforms the
naive MOrdReD baseline across all metrics, suggesting that transferring knowledge
from prior tasks makes a substantial contribution to predictive performance.

4 CONCLUDING REMARKS

We here introduce a novel neural network model, able to infer probabilistic time series
forecasts in both zero- and few-shot learning settings. By introducing a quantisation
scheme, we show how knowledge learnt from auxiliary time series can be transferred to
previously unseen time series with scarce data. We provide empirical evidence that our
approach performs well across a range of metrics, in comparison to other popular meth-
ods. By examining the neural activations of our model, we also show how our cross-task
feature space encapsulates concepts such as ordinality and knowledge transfer.
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