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Abstract. A common pre-processing task in machine learning is han-
dling missing data entries, also known as imputation. Standard techniques
use mean values, regression or optimization based techniques for predicting
the missing data values. In this paper, a kernel based technique is utilized
for imputing data in a multi-scale manner. The construction is based on
Laplacian pyramids, which operate on the row and column spaces of the
data in several scales. Experimental results demonstrate the approach on
publicly available datasets, and highlight its simple computational con-
struction and convergence stability.

1 Introduction

Kernel-based data modeling has become a standard way for coding the relation-
ship between data instances that originate from real-life phenomena. Kernels
play a central role in many unsupervised algorithms aiming for finding a com-
pact representation, which reflects the underlying phenomena of the dataset.
Non-linear dimensionality reduction methods such as Eigenmaps [1], Diffusion
Maps [2], and Magnetic Eigenmaps [3], evokes kernels which capture the local
geometric structure of the data. The kernels’ spectral decomposition is then
computed for deriving a set of reduced coordinates. Once the desired compact
data representation is achieved, it may be utilized for evaluating and predicting
functions that are defined on the data. Regression methods provide a simple
mechanism for evaluating empirical functions over scattered data points. In
particular, kernel based regressions [4, 5] are suitable for cases in which the
relationship between the data points and the function is not linear.

This paper is focused on a multi-scale kernel based technique for evaluating
functions over scattered data. The construction is based on Laplacian pyramids
(LP), which were originally introduced for image coding [6]. Modeling scattered
datasets with LP was proposed in [7]. The method builds a multi-scale data
representation, which can be extended to handle newly arrived data points at
each scale in an efficient and a stable way.

Auto-adaptive Laplacian pyramids (ALP), proposed in [8], improved the orig-
inal LP method. The ALP scheme prevents over-fitting and is robust to noise
by automatically detecting a data-adapted optimal stopping scale for the model.
The method was demonstrated on a noisy time series data set for predicting
solar energy. ALP together with diffusion maps were proposed for completion
of missing data in high-dimensional datasets [9]. A new two-sided ALP method
was proposed in [10] for learning multi-scale connectivity patterns in a matrix
shaped datasets.
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Building on the described LP framework, this work proposes a modified,
flexible, multi-scale technique for multi-directional analysis of high-dimensional
datasets. The concrete application is missing data completion (or imputation),
which is a common pre-processing task in machine learning. Straightforward
approaches include mean and median based imputations [11]. Imputation is
also related to the matrix completion problem, which may be addressed by using
nuclear norm minimization [15], or by generalizations to other regularization [16].
An unsupervised manifold learning method that reveals the underlying geometry
of a given matrix based on multi-scale information was presented in [17]. This
method can be also applied in case of missing data. Here, a new direction for
multi-scale imputation is proposed. The method does not suffer of convergence
issues, it is easy to implement and it may handle a large number of missing
entries.

This paper is organized as follows. In Section 2 the LP and ALP models
are described. In Section 3 the new multi-directional approach is outlined. The
adaptation to data imputation together with experimental results are presented
in Section 4. Conclusions and future extensions are provided in Section 5.

2 Mathematical Background

2.1 One-directional Laplacian Pyramids

Let X = {x1, . . . , xn} be a set of scattered data points, possibly high dimen-
sional, and let f be a function defined on X. The LP representation of f is
an iterative construction, which is defined as follows. A coarse Gaussian kernel

G0 = (g0(xi, xj)), having a large scale of σ0, defined by g0(xi, xj) = e
−‖xi−xj‖

2

σ0 ,
xi, xj ∈ X, is constructed from X. The associated row-normalized kernel of G0

is given by K0 = (k0(xi, xj)), where k0(xi, xj) =
g0(xi,xj)∑
k g0(xi,xk)

.

At a finer scale l, the kernel Gl is defined by gl(xi, xj) = e−‖(xi−xj)‖
2/(

σ0
2l

).
Normalization of Gl yields the smoothing operator Kl. The first iteration, for
which l = 0, generates a smooth approximation of f that is given by

f0(xi) =
n∑

j=1

k0(xi, xj)f(xj), i = 1, . . . , n, xi, xj ∈ X. (1)

In order to simplify the mathematical formulation, the discrete convolution sums
will be written using continuous notations, resulting in a continues form for Eq.
(1) written as f0 = K0 ∗ f.

Let d1 = f − f0, then a finer representation of f is f1 = f0 + K1 ∗ d1. In
general, for l = 1, 2, 3 . . ., we have dl = f − fl−1, and fl = fl−1 +Kl ∗ dl, where
f0 is defined in Equation (1). The function f is approximated by the series of
functions {f0, f1, f2, . . .} in a multi-scale manner, going from a coarser to a finer
representation. The functions {f0, f1, f2, . . .} can be easily extended to a new
point x̄ by evaluating the multi-scale kernels for the pairwise distances between
X and x̄ and then convolving with the known function values.
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2.2 Two-directional Laplacian Pyramids

Given a matrix type dataset X of size M ×N and function f = f(x, y) of size
M × N that is defined on X, the LP method is modified to a two-directional
approximation [10]. At each scale l, two normalized kernels are constructed,

these are denoted byK
(L)
l andK

(R)
l , for left (L) and right (R) respectively. First,

f is coarsely approximated by f0 = K
(L)
0 ∗ f ∗K(R)

0 . Next, the difference d1 =
f − f0, is calculated and it becomes the input for the next finer approximation

f1 = f0 + K
(L)
1 ∗ d1 ∗K(R)

1 . After l − 1 iterations the difference between f and
its multi-scale representation is given by dl = f − fl−1, and a fine version of f

is fl = fl−1 +K
(L)
l ∗ dl ∗K(R)

l .

2.3 Auto-adaptive Laplacian Pyramids

The LP iterations may be stopped by setting an admissible error to a small
threshold, defined by err, and requiring ‖f − fl‖ < err . A modification of this
procedure (see [8]) determines an appropriate stopping scale by implementing
a leave-one-out-cross-validation within the algorithm. This modification treats
each training point x ∈ X is treated as a test point, which prevents over-fitting.
The multi-scale kernels are modified by setting a zero-diagonal, defined by

G̃l(xi, xj) =

{
Gl(xi, xj) i 6= j

0 i = j.
(2)

The corresponding row-normalized operators are denoted by K̃l for the one-
directional scheme and K̃R

l , K̃L
l for the two-directional setting. The stopping

scale is set by computing the mean square error at each level and choosing the
scale l? for which the minimum error value occurs.

2.4 Laplacian Pyramids Error Analysis

Theorems regarding the error rate of LP were proved in [10]. It was shown that
if a function f is in W 2l?,2, (the space for which f and its weak derivatives are
in L2), where l? is the final stopping level, then the LP error obtains

‖dl(x)‖L2 ≤ Cσ2
0

(
σ2
0

µl

)l−1

‖f(x)‖2l,2 .

Recently, in [18] conditions for the algorithm’s convergence were provided to-
gether with stability bounds on the extended function.

3 Multi-Directional Laplacian Pyramids

Given a dataset X of size M × N and a function f = f(x, y), which is defined
on X, we propose the following multi-directional LP construction. For level l0,
a coarse approximation of f , given by

f0 =
1

2

(
K̃

(L)
0 ∗ f + f ∗ K̃(R)

0

)
,
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is constructed. The normalized zeros-diagonal kernels K̃
(L)
0 and K̃

(R)
0 capture

the pairwise distances between the rows and the columns of X, respectively.
Then, the difference d1 = f−f0 is input for the next iteration, which yields f1 =

f0 + 1
2

(
K̃

(L)
1 ∗ d1 + d1 ∗ K̃(R)

1

)
. After l iterations, the functions f is expressed

by

fl = fl−1 +
1

2

(
K̃

(L)
l ∗ dl + dl ∗ K̃(R)

l

)
.

Furthermore, we present a more general setting, in which one can control the
contribution of the row and column kernels to the sum. In this setting fl is
expresses by

fl = fl−1 +
(
α
(
K̃

(L)
l ∗ dl

)
+ (1− α)

(
dl ∗ K̃(R)

l

))
, (3)

where 0 ≤ α ≤ 1. In this work, α is set by testing several optional values.

4 Completion of Missing Data Entries

The proposed approach is demonstrated for imputation in matrix type datasets.
In this setting the function is just the data itself, i.e f = X. The data XM×N
includes missing values with known locations, coded in a binary matrix BM×N ,
where (bij) = 1 indicates known data locations and 0 otherwise. The kernels’
pairwise distances are computed only based on the known values, i.e. (bij) = 1.

Application of multi-directional LP as described in Eq. (3) to public datasets
from the UCI repository [19] is demonstrated. The features (columns) of the
inspected dataset were normalized to have mean 0 and standard deviation 1.
Results plot the average error from 10 executions. Missing data locations were
chosen at random in each iteration.

Three small datasets are considered: Ecoli (336×7), White wine (4898×11)
and Boston housing (506×11, after eliminating two categorical attributes). The
results are compared with one-directional LP (1D Pyds), two-directional LP (2D
Pyds), and with results from [14]. The proposed multi-directional method is de-
noted by MD Pyds. The MD Pyds method, which implements Eq. (3), was
tested with 3 different α values, α ∈ {0.2, 0.5, 0.8}. Best results were achieved
for α = 0.8. Since the evaluated data sets have a small number of columns, it is
reasonable that the model which emphasises the row-convolution kernels yields
the best results. The last three columns in Table 1 report the errors for the
Iterative Step-wise Regression Imputation method (IRMI) [13], Optimized Lin-
ear Imputation (OLI) [14], and the Multiple Imputation technique (MICE) [12].
The missing data percentage in these examples is 5%. IRMI didn’t converge for
the white wine dataset. The proposed multi-directional LP approach performs
well, and in two cases achieves lower errors compared to the other regression
based methods.

A lager dataset, voice rehabilitation [19] of size 126× 309 in considered. 126
is the number of patients and 309 is the number of computed features. Three
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Dataset MD Pyds 2D Pyds 1D Pyds IRMI OLI MICE
Ecoli 0.55 0.62 0.66 8.26 5.75 1.2
Wine 0.40 0.43 0.46 – 0.87 1.1
Housing 0.29 0.32 0.34 0.28 0.30 0.56

Table 1: MSE Imputation errors for the three public dataset

experiments were performed, with 20% 50% and 80% of randomly selected miss-
ing data entries. The multi-directional model was tested with α ∈ {0.2, 0.5, 0.8}
(see Eq. (3)). The described results are for α = 0.5, which yields the lowest
error rates. The results presented in Table 2 were compared with one-directional
and two-directional LP and with imputation by using the mean column value
and with the the column’s most frequent value. Figure 1 plots the multi-scale
process for 300 test points at scales l = 2, 4 and 6, where l? = 6 is the finest
scale.

% missing MD Pyds 1D Pyds 2D Pyds Mean Freq.
20% (MSE) 0.3301 0.5843 0.5793 0.9954 10.9006
50% (MSE) 0.4363 0.7047 0.6788 1.0206 8.2944
80% (MSE) 0.6093 0.8408 0.8103 1.0433 5.0751

Table 2: MSE Imputation errors for the voice dataset
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Fig. 1: MD Pyds imputation of 300 test points in iterations 2,4, and 6 from left
to right. Known values are colored blue, imputed values are pink.

5 Conclusions

The proposed formulation of the LP approach separates the row and column
multi-scale operators, which results in a more flexible scheme. The method is
adapted to the task of completions of missing data entries, were it is desirable
to take into account the geometric structure of both the row and column spaces.
The scheme does not suffer of convergence risks and it significantly reduces the
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errors when compared to the previous LP constructions. Additionally, it may be
easily extended to process cubic or even higher-dimensional datasets with missing
entries. In future work, we plan to develop a data-driven criteria for setting the
value of the parameter α in Eq. (3), while expanding the experimental results.
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