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Abstract. Statistical Learning Theory deals with the problem of esti-
mating the performance of a learning procedure. Any learning procedure
implies making choices and this choices imply a risk. When the number of
choices is finite, the state-of-the-art tool for evaluating the total risk of all
the choice made is the Union Bound. The problem of the Union Bound is
that it is very loose in practice if no a-priori information is available. In
fact, the Union Bound considers all choices equally plausible while, as a
matter of fact, a learning procedure targets just particular choices disre-
garding the others. In this work we will show that it is possible to improve
the Union Bound based results using a distribution dependent weighting
strategy of the true risks associated to each choice. Then we will prove
that our proposal outperforms or, in the worst case, it degenerate in the
Union Bound.

1 Introduction

Statistical Learning Theory (SLT) [1, 2] deals with the problem of understand-
ing and estimating the performance of a statistical learning procedure. Although
asymptotic analysis is a crucial first step in this direction, finite sample error
bounds are of more value as they allow the design of model selection proce-
dures [3]. These error bounds typically have the following form: with high
probability, the generalization error of the selected hypothesis, chosen in a space
of possible ones, is bounded by an empirical estimate of error plus a penalty
term which depends on the size of the hypothesis space and the number of sam-
ples available. The latter terms basically take into account that the learning
procedure made a choice between a set of possible options based on the avail-
able data. Every data dependent choice implies a risk and the penalty term is
exactly the measure of this risk. When the number of choices is finite, namely
the hypothesis space is composed by an arbitrary finite number of hypothesis,
the state-of-the-art tool for evaluating their total risk is the Union Bound (UB)
also called Bonferroni Bound [1, 4]. The Union Bound is an ubiquitous building
block in SLT [3]: in the Vapnik-Chervonenkis theory, in the Rademacher Com-
plexity theory, in the Algorithmic Stability theory, in the Compression Bound,
in the PAC-Bayes theory, and even in the Differential Privacy theory.

Our proposal, takes inspiration from several works in the field for reaching a
better result. The first idea, which is also a driver of the Shell Bound, is that,
during any learning procedure the hypotheses with high error will be never taken
into account and consequently we should not pay the risk for those hypotheses [5].
The second idea is that, since we do not know the true error of the hypotheses
but just its empirical one, we should discard those hypotheses for which the
estimated confidence intervals do not overlap [6] with the ones of the hypothesis
of minimal training error. The third idea is that, since there is no supporting
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theory for discarding the hypothesis with non-overlapping confidence intervals,
we should weight differently the risk associated to each hypothesis based on their
true error analogously to what is done in the field of multiple hypotheses test-
ing [7]. The fourth idea is that other researchers have shown that a distribution
dependent weighting strategy can be performed without the actual knowledge
of the distribution [8]. By combining all these ideas we will be able to derive
our proposal and show that improves both on the Union Bound and on the Shell
Bound.

2 Preliminaries

Let us consider, for simplicity, the classical binary classification framework. Let
X be the input space and Y = {−1,+1} be the set of binary output labels. Let
Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ X and Yi ∈ Y ∀i ∈ {1, · · · , n}, be a
sequence of n ∈ N∗ samples drawn independently from an unknown probability
distribution µ over X×Y. Let us consider an hypothesis h : X → Y chosen from a
finite set H of possible hypotheses of cardinality m ∈ N∗ such that H = {hi : i ∈
I} where I = {1, · · · ,m}. The error of h in approximating P{Y |X} is measured
by a prescribed bounded loss function ` : Y × Y → [0, 1]. The generalization
error of h is defined as R(h) = E{`(h(X), Y )} ∈ [0, 1]. Since the probability
measure µ is usually unknown, the generalization error cannot be computed,
however we can compute the empirical error R̂(h) = 1

n

∑n
i=1 `(h(Xi), Yi) ∈ [0, 1].

If the choice of h ∈ H does not depend on Dn, namely if we want to bound the
generalization error of a single hypothesis in the hypothesis space chosen before
seeing the data, it is possible to prove that

P
{
R(h) ≥ L(R̂(h), δ)

}
≥ 1− δ, P

{
R(h) ≤ U(R̂(h), δ)

}
≥ 1− δ,

where δ ∈ (0, 1) while L and U are respectively lower and upper bounds of the
generalization error (e.g. [9]).

In general the choice of h ∈ H does depend on Dn: in this case we have to
estimate the risk due to this data dependent choice. As an example, common
practice for choosing h ∈ H based on Dn is to choose the hypothesis with mini-
mum empirical error i∗ : arg mini∈I R̂(hi), and this approach is called Empirical
Risk Minimization, but others possibilities exist such as the Structural Risk
Minimization, or the penalized (regularized) Empirical Risk Minimization [10].

In order to guarantee a prescribed confidence level, or risk, of the chosen
hypothesis, the UB can be applied.

Theorem 1. Let qi = q(hi) ∈ (0, 1) and pi = p(hi) ∈ (0, 1) be some weight
associated to hi with i ∈ I before seeing the data and such that

∑
i∈I qi+pi = 1,

then the following bounds hold

P
{
L
(
R̂(hi), δq(hi)

)
≤ R(hi) ≤ U

(
R̂(hi), δp(hi)

)
∀i ∈ I

}
≥ 1− δ.

Theorem 1 introduces a weight for each risk associated to each choice. Weight-
ing more the risk associated to useful choices leads to tighter bounds on the gen-
eralization error of hypotheses that will be selected by the algorithm (hypotheses
characterized by small empirical error) and looser estimates over the others (hy-
potheses characterized by high empirical error). Unfortunately, this approach
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is mainly theoretical since the weights must be chosen before seeing the data
and consequently we cannot set them without an a priori knowledge about the
problem. Since Theorem 1 does not propose any solution for the choice of these
weights these are set to be the same for each of the choices q(hi) = p(hi) = 1/2m
∀i ∈ I.

3 Our Proposal

In this work, we propose a Distribution Dependent Weighted UB (DDWUB)
where the weights depend on some parameters of the distribution which gen-
erated them. In particular, we define a set of functions fpi : Rm → R and
fqi : Rm → R with i ∈ I such that

q(hi) = fqi (R1, · · · , Rm), p(hi) = fpi (R1, · · · , Rm) ∈ (0, 1), ∀i ∈ I,∑
i∈I f

q
i (R1, · · · , Rm) + fpi (R1, · · · , Rm) = 1.

Note that fqi , f
p
i with i ∈ I are quite general and data independent and for this

reason they can be inserted in Theorem 1.
Since in our case, the scope is to find tighter upper bounds of the empirical

minimizer, we study the case when, for L and U, the proposal of [9] is exploited,
and we set

fqi (R1, · · · , Rm) = 1/2m, fpi (R1, · · · , Rm) = 1/2e−γmax[θ,Ri]/
∑
j∈I e

−γmax[θ,Rj ], ∀i ∈ I,

with particular values of γ ∈ [0,∞) and θ ∈ [0, 1]. The choiche of the weights
takes inspiration from the work of [8] which proposed, in the context of the
PAC-Bayes theory, a distribution dependent method for assigning an a-priori
distribution over a set of hypotheses in order to give an higher probability to
the hypothesis with small generalization error. This method has been shown
to possess interesting theoretical properties and to be also quite effective in
practical applications [3]. In this setting it is possible to state our DDWUB.

Corollary 1. If ∀i ∈ I fi(r1, · · · , rm) = e−γmax[θ,ri]/
∑
j∈I e

−γmax[θ,rj ] with γ ∈
[0,∞) and θ ∈ [0, 1], then the following bound holds1

P

{
max

[
0, R̂i−

√
log( 2m

δ )
2n

]
≤Ri≤min

[
1, R̂i+

√
log
(

2
δfi(R1,··· ,Rm)

)
2n

]
∀i∈I

}
≥1−δ.

Corollary 1 is a direct consequence of Theorem 1 and [9]. In Corollary 1,
γ acts as a weighting factor. The larger is γ the larger are the weights of the
risks associated to hypotheses with small empirical error and the smaller are
the weights of the risks associated to hypotheses with large empirical error. For
γ → ∞ we have that pi∗ → 1 and pi → 0 ∀i ∈ I \ i∗. The smaller is γ the
less is the difference between the weights of the risks. For γ → 0 we have that
pi = 1/m ∀i ∈ I. In Corollary 1, θ, instead, acts as a protection against the
fact that the empirical error is measured over a finite number of samples and,

1We replace, for brevity, R(hi) and R̂(hi) with Ri and R̂i.
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if the sample size is small, hypotheses with a small difference in the empirical
error are indistinguishable. In other words, the weights depend on unknown
parameters of the data generating distribution, then we will have to estimate
them and since the number of sample is finite these estimates will not allow us
to distinguish hypotheses which show similar empirical error. For this reasons,
θ allows to give the same the weight to the risks associated to hypotheses with
small empirical error. As we will see in this section, the values of γ and θ must be
set in a particular way in order to be sure that DDWUB improves over the UB.
In particular: Lemma 1 shows that in order to upper bound the generalization
error of the empirical risk minimizer based on DDWUB of Corollary 1 we have
to solve an optimization problem, Theorem 2 show that for particular values of
γ the solution is unique and can be found by simply search for the fixed point
of a simple function, and Theorem 3 show that for particular values of θ it is
possible to prove that DDWUB is tighter than, or in the worst case as tight as,
the UB. The proof the theorems can be found in Appendix A.

Lemma 1. Under the same conditions of Corollary 1 if i∗ = arg mini∈I R̂i, then
we can state that following bound holds

Ri∗≤maxr1,··· ,rm ri∗

s.t. ri≥max
[
0, R̂i−

√
log (2m/δ)/2n

]
, ∀i∈I

ri≤min
[
1, R̂i+

√
log
(
2
∑
j∈I e

−γmax[θ,rj ]/δe−γmax[θ,ri]
)
/2n
]
, ∀i∈I.

Theorem 2. Under the same conditions of Lemma 1 if γ ≤ 2
√
n, the solution

of the optimization problem of Lemma 1 exists, it is unique, and it is the fixed
point r∗i∗ of the following function of ri∗

ri∗ = min
[
1, R̂i∗ +

√
log
(
2
∑
j∈I e

−γmax[θ,rj ]/δe−γmax[θ,ri∗ ]
)
/2n
]

where ri = max
[
0, R̂i −

√
log (2m/δ)/2n

]
∀i ∈ I \ i∗.

Note that, in order to find the fixed point defined in Theorem 2 a simple
bisection method can be applied.

Theorem 3. Under the same conditions of Theorem 2 if

θ = min
[
1,min [R1, · · · , Rm] +2

√
log (2m/δ)/2n

]
. (1)

then r∗i∗ ≤ min
[
1, R̂i∗+

√
log (2m/δ)/2n

]
.

By finding the r∗i∗ for all possible values of θ and then by selecting the largest
one which satisfies Eq. (1) we have the results of our DDWUB.

3.1 Example

Before presenting DDWUB in the general setting we would like to show an
application of DDWUB in the simplified setting. Let us consider the case when

R̂1 = R̂2 = 0, R̂3 = R̂4 = · · · = R̂m = ν, ν ∈ {1/n, 2/n, · · · , 1} .
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Let us set γ = 2
√
n (see Theorem 2) and note that, in order to upper bound

the function with the smallest empirical error (i.e. the one corresponding to R̂1)

we have that DDWUB states that, r1=
√

ln
(
2
∑m
i=1 e

−2
√
nmax[θ,ri]/δe−2

√
nmax[θ,r1]

)
/2n,

r2=0, r3=r4= · · ·=ν−
√

ln (2m/δ)/2n, θ= min
[
1,min [r1, · · · , rm] +2

√
log (2m/δ)/2n

]
.

Note that min [r1, · · · , rm] = 0 → θ =
√

ln (2m/δ)/2n. Thanks to the theory of

DDWUB we can state that r∗1 ≤ θ. Let us note that if m < δe2nν
2

2 , then
r3 = · · · = rm > θ. Than we can easily state that

limn→∞
2
∑m
i=1 e

−2
√
nmax[θ,ri]

δe−2
√
nmax[θ,r1] = 4

δ ,

which means that all the hypothesis in the space with R̂ 6= 0, if m < δe2nν
2/2 are

not taken into account, asymptotically, in estimating the upper bound of the
hypothesis with the smaller error with DDWUB.

4 Discussion

In this work, for an arbitrary finite hypothesis space, we consider the hypothesis
of minimal training error, we give a fully empirical new upper bound on the
generalization error of this hypothesis and we show that our proposal is always
tighter than the one based on the UB and, in the worst case, it degenerates
in the UB. Our approach applies to finite hypotheses spaces and surely more
sophisticated techniques, such as the Local Rademacher Complexity [3], can be
employed and can sometimes result in tighter bounds. However, insight into
finite classes remains quite useful [11]. Finite class analysis can be exploited for
as a pedagogical tool. Finite class analysis can teach new directions in which
to look for the development and evolution of more sophisticated bounds. Finite
class analysis can be useful for model selection purposes (e.g. selecting the most
suitable hypothesis space, or set of hyperparameters, or algorithm). Finite class
analysis can be useful when the models are represented with limited number
of bits because of the constants involved in the bounds. In the future, we will
investigate how to generalize the approach, investigate more its performance,
and exploit it to improve results in SLT which exploit the UB.
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A Proofs

Proof of Lemma 1. The proof is a direct consequence of Theorem 1.

Proof of Theorem 2. Note that, under the assumptions of the lemma, ∀r1, · · · , rm
∈ [0, 1], and ∀i ∈ I \ i∗ and ∀r′k, r′′k ∈ [0, 1] such that r′k < r′′k√

log

(
2
∑
j∈I\k e

−γmax[θ,rj ]+e
−γmax[θ,r′

k
]

δe−γmax[θ,ri]

)
2n −

√
log

(
2
∑
j∈I\k e

−γmax[θ,rj ]+e
−γmax[θ,r′′

k
]

δe−γmax[θ,ri]

)
2n ≥0.

Moreover 0 < min
[
1, R̂i +

√
log
(
2
∑
j∈I e

−γmax[θ,rj ]/δe−γmax[θ,ri∗ ]
)
/2n
]
≤ 1 and if

γ ≤ 2
√
n and pi∗ = e−γri∗/

∑
j∈I e

−γrj then

∂
√

log

(
2
∑
j∈I e

−γrj/δe
−γri∗

)
/2n/∂ri∗=γpi∗ (1− pi∗ )/4npi∗

√
ln

(
2

δpi∗

)
/2n< (1−pi∗ )

2
√

ln
(
2/δpi∗

)
/2
<1.

Consequently the statement of the lemma is proved.

Proof of Theorem 3. Let us define ϑ = min
[
1, R̂i∗+

√
log (2m/δ)/2n

]
. Let us sup-

pose that ri ≤ ϑ, ∀i ∈ I \ i∗. If we set r∗i∗ = ϑ, we have, thanks to the hypothesis
of the theorem, that e−γmax[θ,ri]/

∑
j∈I e

−γmax[θ,rj ] = 1/m, ∀i ∈ I, then r∗i∗ is a fixed
point and since it is unique by Theorem 2 we have that r∗i∗ ≤ ϑ. Let us suppose
now that ri ≤ ϑ, ∀i ∈ I \ {i∗, k}, rk > ϑ, k ∈ I \ i∗. Thank to the hypothesis of
the theorem we can state that

e−γmax[θ,ri∗ ]∑
j∈I\{i∗,k} e

−γmax[θ,rj ]+e−γmax[θ,ri∗ ]+e−γmax[θ,rk]
> e−γmax[θ,ri∗ ]∑

j∈I\i∗ e
−γθ+e−γmax[θ,ri∗ ]

,

and, consequently, we can also state that

ri∗ ≤ min
[
1, R̂i∗+

√
log
(
2
∑
j∈I\i∗ e

−γθ + e
−γmax[θ,ri∗ ]/δe−γmax[θ,ri∗ ]

)
/2n
]
.

As a consequence, by exploiting the same reasoning exploited before, r∗i∗ ≤ ϑ.
By induction and by noting that

min [R1, · · · , Rm] ≥ max
[
0,min

[
R̂1, · · · , R̂m

]
−
√

log (2m/δ)/2n
]
,

we can state that R̂i∗ ≤ min [R1, · · · , Rm] +
√

log (2m/δ)/2n, and consequently the
statement of the theorem is proved.
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