
Graph Neural Networks for the Prediction of
Protein–Protein Interfaces

Niccolò Pancino1,2 Alberto Rossi1,2 Giorgio Ciano1,2

Giorgia Giacomini1 Simone Bonechi1 Paolo Andreini1

Franco Scarselli1 Monica Bianchini1 Pietro Bongini1,2,c

1 – SAILAB - University of Siena - via Roma 56, 53100, Siena, Italy
2 – DINFO - University of Florence - via di Santa Marta 3, 50139, Florence, Italy
c – Corresponding author, email: pietro.bongini@gmail.com

Abstract. Binding site identification allows to determine the function-
ality and the quaternary structure of protein–protein complexes. Various
approaches to this problem have been proposed without reaching a viable
solution. Representing the interacting peptides as graphs, a correspon-
dence graph describing their interaction can be built. Finding the maxi-
mum clique in the correspondence graph allows to identify the secondary
structure elements belonging to the interaction site. Although the max-
imum clique problem is NP-complete, Graph Neural Networks make for
an approximation tool that can solve the problem in affordable time. Our
experimental results are promising and suggest that this direction should
be explored further.

1 Introduction

Proteins are fundamental molecules for life. They are involved in any biological pro-
cess that takes place in living beings, carrying out a huge variety of different tasks. In
these molecules, functionality and structural conformation are strictly correlated [8].
Therefore, analyzing structural features of proteins is often useful in understanding
which biological processes they are involved in, which ligands they bind to and which
molecular complexes they form.
The structure of a protein can be described at three different levels: the primary
structure corresponds to the sequence of amino acids it is composed of; the secondary
structure corresponds to the local conformation of the peptide chain, in the shape of
α–helices, β–sheets or coils; the tertiary structure represents the three–dimensional
configuration of the molecule. Often, two or more molecules bind together to form a
protein complex, whose shape goes under the name of quaternary structure. Dimers
are the simplest protein complexes, as they are composed of just two monomers.
To form such complexes, monomers interact through specialized parts of their surface,
called binding sites or interfaces. These interactions can be studied with the help
of graph theory. Indeed, each monomer can be represented as a graph, with nodes
corresponding to secondary structure elements (SSEs), while edges stand for spatial
relationships between adjacent SSEs, which can be parallel, anti–parallel or mixed.
Using graphs of two different monomers, a correspondence graph can be built, whose
nodes describe all the possible couples of SSEs from the two different subunits [7].
Based on the correspondence graph, identifying binding sites on protein surfaces can
be reformulated as a maximum clique search problem [5].
The maximum clique problem is known to be an NP–complete problem, meaning that,

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

127

except for very small graphs, traditional operations research algorithms [3] will em-
ploy a prohibitive amount of time before solving it. From this consideration stemmed
the idea of using a machine learning method to solve the problem with reasonable
computational costs. In particular, Graph Neural Networks (GNNs) [16] look like the
perfect model, with their ability to process graph–structured inputs. GNNs have seen
many recent advances and have become a leading tool in graph–based applications
[11, 18, 13, 15, 2].
The maximum clique problem consists in a binary classification between the nodes
which belong to the maximum clique and those which do not. Clique detection was
already addressed with GNNs in the seminal work [6], and, more recently, also in the
transductive learning framework [14]. Finally, this strategy was also further refined by
exploiting the deeper version of GNNs, the Layered Graph Neural Networks (LGNNs)
[1]. In this model, each layer is a standalone GNN which is trained separately, using
always the same target. The solution proposed by the previous layer is integrated to
the input of each layer after the first, significantly addressing the long–term depen-
dency issue.
The rest of the paper is organized as follows: Section 2 describes the data acquisition
and processing operations; Section 2.3 illustrates the experimental setup; Section 3
presents the results of our work, which are discussed in Section 4.

2 Materials and Methods

In this section, we will describe the data and the experimental methodology used in
this work. In 2.1, we will describe the dataset and how it was built. In 2.2 we will
describe the GNN model. In 2.3, we will explain our experimental procedures.

2.1 Dataset Construction

To collect our dataset, heterodimers (i.e. dimers formed by two different monomers)
characterized by the absence of disulfide bridges, the presence of salt bridges, and
protein–protein interaction sites were searched in the Protein DataBank in Europe
(PDBePISA). We obtained a database of 6,695 known proteins for a total of 160,680
monomeric interfaces. To guarantee biological significance, some criteria were en-
forced: an area of at least 200 A2, 〈x, y, z〉 symmetry, and only two interacting protein
molecules. After this operation, we obtained a set of 12,455 interfaces. For every inter-
face, two protein graphs were built, representing two polypeptide chains which interact
on the binding site.
The monomeric graphs were built using VPLG [17], with PDB and DSSP [9] files rep-
resenting the whole protein. Each node v is labeled with a feature vector l(v) which
consists of: an ID number, the SSE type, the number of occurrences of cysteine and
that of the aromatic amino acids (tyrosine, tryptophan and phenylalanine), the per-
centage of amino acids taking part in the interface and the overall hydrophobicity [12],
the charge and Accessible Surface Area (ASA) of the SSE, respectively as the sum of
hydropathic indexes, charges and accessible surface areas of each amino acid at pH 7.
Once the graph has been produced for both monomers, it is possible to build the
correspondence graph [7, 5]. Let G1 = (V1, E1) and G2 = (V2, E2) be the graphs repre-
senting two protein chains and G = (VG, EG) be the correspondence graph of G1 and
G2. Let vi, ui ∈ Vi be two generic nodes in Gi with i = 1, 2. Therefore, two nodes
(v1, v2), (u1, u2) ∈ VG are connected by an edge e ∈ EG if and only if ∃(v1, u1) ∈ E1 and

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

128

∃(v2, u2) ∈ E2. The edge label w{e} is a one–hot representation of the spatial relation-
ship w′{e} between two adjacent nodes in G, which depends on the labels w{(v1, u1)}
and w{(v2, u2)}, so that w′{e} is the same edge label if both the edge labels in G1

and G2 are equal, mixed otherwise. The label of node (v1, v2) ∈ VG consists of: an ID
number, a one–hot representation of the SSE type, the differences in the occurrences of
cysteine and the aromatic amino acids, the arithmetic mean of the two hydrophobicity
values, the minimum of the ASAs and the sum of the charges of the two SSEs. In
particular, the SSE type of the node v ∈ VG, which represents v1 ∈ V1 and v2 ∈ V2, is
the same as that of the nodes v1 and v2 if both belong to the same SSE class, while it
is defined as mixed if they belong to different SSE classes.
The node targets were generated with the Bron and Kerbosch algorithm [4], which
identified the cliques within each correspondence graph, with a minimum size of three
nodes. Subsequently, these cliques were analyzed, in order to determine whether or
not they were biologically significant. In this context, a clique is defined as positive or
biologically significant if and only if all the nodes belonging to that clique represent
pairs of SSEs of different monomeric graphs, that contain both at least one residue that
is part of the interface. Hence, the target attached to each node is a two–dimensional
vector containing a one–hot coding of the two classes: positive if the node belongs to
a biologically significant clique, negative otherwise.
We obtained 512 correspondence graphs, each containing at least one biologically sig-
nificant clique (and any number of negative cliques) composed of three or more nodes.
These were not completely connected, often being made of multiple separated con-
nected components. Since many connected components did not include cliques, a prun-
ing strategy was adopted, in order to clean the dataset. The correspondence graphs
were split, obtaining a graph for each connected component. We kept only those which
contain at least one clique, whether positive or not. This operation produced the final
dataset of 1044 connected graphs, 537 of which contain a positive clique, while the
remaining 507 contain only negative cliques. Table 1 provides numerical information
on the dataset, before and after the pruning process.

Dataset Graphs Edges Nodes Nodes0 Nodes1 %Nodes1

Before Pruning 512 441.203 328.629 325.798 2.831 0.86 %

After Pruning 1.044 274.608 166.424 163.593 2.831 1.7 %

Table 1: Dataset statistics before and after data cleaning (Nodes0/1 represent nega-
tive/positive nodes)

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) can process graph–structured data, calculating an
output at each node, or on any subset of relevant nodes. GNNs create an encoding
network, an architecture that replicates the structure of the input graph, using two
Multi–Layer Perceptrons (MLPs) as building blocks. A state xn is associated to each
node n. One MLP calculates the state transition function fw at each node, the other
computes the output function gw. The network unfolds itself in time and space, respec-
tively by replicating the MLP units on each node of the input graph, and by iterating
the state computations until a stable point is reached. At each iteration t, for each
node n, the state xn(t) ∈ Rs is updated by fw, depending on the node label and on the
states of its neighbors at t − 1. The information associated to each node can thus be
propagated through the whole graph in a sufficient number of iterations. The output

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

129

function gw, taking in input the final node state x∗n, is then computed on the nodes
for which output is required. More formally, the state updating process is described
by Eq. (1), where ln ∈ Rq is the label attached to node n.

xn(t) =
∑

(n,v)∈E

fw(ln, xv(t− 1), lv), on = gw(x∗n, ln) (1)

As previously stated, the computation takes into account the neighborhood of n, de-
fined by its edges (n, v) ∈ E. The summation in Eq. (1) allows us to deal with any
number of neighbors without needing any order relationship among them.
A Layered Graph Neural Network (LGNN) is a stacked architecture in which each layer
consists of a GNN. The first layer is a standard GNN operating on the original input
graphs. Each layer after the first is trained on an enriched version of the graphs, in
which the information obtained from the previous layer is concatenated to the original
node labels. This additional information consists in, either, the node state, the node
output, or both. Formally, the label of node n in the i–th layer, i > 1, is lin = [ln, x

i−1
n]

or lin = [ln, x
i−1
n] or lin = [ln, x

i−1
n , oi−1

n], where xi−1
n , oi−1

n are, respectively, the state
and the output of node n at layer i − 1 of the cascaded architecture. This schema
encourages each layer to refine the solution provided by the previous layers, improving
the performance with respect to a single–layered GNN. LGNNs are trained step by
step, one layer after the other, from the first to the last. Each layer is trained using
the same original targets.

2.3 Experimental Setup

We developed a binary GNN classifier for the detection of maximum cliques in the
correspondence graphs, which addresses the problem as a node–focused classification
task. Usually, in a classification task, the performance is measured in terms of accuracy.
This metric, though, is not precise on unbalanced datasets. Therefore, we decided to
evaluate the performances of our model using the F1–Score, which combines precision
and recall to provide a balanced measure.
The architecture of the MLP module dedicated to the output function gw was kept
fixed, using a single level MLP and the softmax activation function. On the contrary, a
10–fold cross–validation was performed in order to determine the best hyperparameters
for the MLP implementing the state transition function fw. According to the cross–
validation results, the MLP architecture with better performance has got a single
hidden–layer with logistic sigmoid activation functions. This setup was used also to
test a 5–layered GNN network, where each GNN layer shares the same architecture.
In order to evaluate the performances of the LGNN, a 10–fold cross–validation was
carried out again. The LGNN is composed of 5 GNN layers, with state dimension
equal to 3. The state is calculated by a 1–layer MLP with logistic sigmoid activations,
while the output is calculated with a 1–layer MLP with softmax activation. Since
the negative/positive examples ratio is quite large, the weight of positive examples is
fixed to the 10% of this ratio, against a weight of 1 for negative examples, in order to
balance the learning procedure. The model is trained with Adam optimizer [10] and
cross–entropy loss function.

3 Experimental Results

The best performance is obtained with LGNNs integrating only the state in the node
labels. There are slight improvements in precision and more tangible improvements

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

130

in recall, which gains more than 10 percentage points in the second GNN level, and
then continues to grow and stabilize in the following levels, as shown in Fig. 1. This
architecture is the only one in which we observe a significant increase of the F1–Score,
getting more than 6 percentage points from nearly 35% of the first GNN level to more
than 40% in the final GNN level, as reported in Table 2.
Contrariwise, integrating in the node labels only the output or both the state and
the output, the F1–score decreases through the LGNN layers. The other parameters
remain almost stable, except for recall, which slightly increases among the LGNN
strata. However, the standard deviation of the recall tends to grow, suffering from a
marked dependence on the initial conditions of the experiment. The results confirm
the expectations based on biological data and show good performances in determining
the interaction sites, recognizing on average about 60% of the interacting nodes.

Fig. 1: 5 levels LGNN 10–fold cross validation results: F1–score

Output Level 1 Level 2 Level 3 Level 4 Level 5
Precision 0.319(0.069) 0.271(0.058) 0.287(0.049) 0.266(0.046) 0.295(0.07)
Recall 0.455(0.048) 0.447(0.111) 0.476(0.061) 0.446(0.101) 0.517(0.059)
F–Score 0.368(0.046) 0.331(0.062) 0.354(0.04) 0.329(0.062) 0.368(0.049)

State Level 1 Level 2 Level 3 Level 4 Level 5
Precision 0.31(0.061) 0.279(0.045) 0.322(0.052) 0.295(0.053) 0.328(0.061)
Recall 0.436(0.063) 0.558(0.056) 0.524(0.087) 0.585(0.08) 0.571(0.067)
F–Score 0.358(0.05) 0.368(0.039) 0.392(0.041) 0.387(0.053) 0.414(0.055)

Both Level 1 Level 2 Level 3 Level 4 Level 5
Precision 0.308(0.063) 0.273(0.052) 0.261(0.106) 0.301(0.064) 0.296(0.06)
Recall 0.46(0.056) 0.544(0.109) 0.52(0.185) 0.518(0.168) 0.597(0.096)
F–Score 0.364(0.047) 0.354(0.042) 0.342(0.125) 0.372(0.085) 0.392(0.063)

Table 2: Results obtained with three different LGNN settings: propagating the output,
the state or both from one layer to the next

4 Conclusions

We addressed the problem of protein–protein binding site detection as a search for
the maximum clique in the interface correspondence graph. Although the problem is
NP–complete, our method, based on GNNs, can find the maximum clique in affordable
time. The performances of the model were measured in terms of F1–score and show
that our approach is very promising, though it can be further improved. One key
idea in this direction is that of using graphs in which the nodes correspond to single

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

131

amino acids, rather than to SSEs. Although this latter approach would increase the
complexity of the problem, it would avoid the loss of information we encounter in
compressing amino acid features into SSE nodes. Moreover, predictions obtained in
this setting would be more accurate describing the binding site at the amino acid level.

References

[1] N. Bandinelli, M. Bianchini, and F. Scarselli. Learning long-term dependencies using
layered graph neural networks. In The 2010 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, July 2010.

[2] P. Battaglia et al. Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, 2018.

[3] I. M. Bomze et al. The maximum clique problem. In Handbook of combinatorial opti-
mization, pages 1–74. Springer, 1999.

[4] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.
Commun. ACM, 16(9):575–577, Sept. 1973.

[5] E. J. Gardiner, P. J. Artymiuk, and P. Willett. Clique-detection algorithms for matching
three-dimensional molecular structures. Journal of Molecular Graphics and Modelling,
15(4):245–253, 1997.

[6] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.,
volume 2, pages 729–734 vol. 2, July 2005.

[7] H. M. Grindley et al. Identification of tertiary structure resemblance in proteins using
a maximal common subgraph isomorphism algorithm. Journal of Molecular Biology,
229(3):707 – 721, 1993.

[8] H. Hegyi and M. Gerstein. The relationship between protein structure and function: a
comprehensive survey with application to the yeast genome (edited by g. von heijne).
Journal of Molecular Biology, 288(1):147 – 164, 1999.

[9] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637, 1983.

[10] D. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[11] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

[12] J. Kyte and R. Doolittle. A simple method for displaying the hydropathic character of a
protein. Journal of Molecular Biology, 157(1):105–132, 1982.

[13] Y. Li et al. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493,
2015.

[14] A. Rossi et al. Inductive–transductive learning with graph neural networks. In IAPR
Workshop on Artificial Neural Networks in Pattern Recognition, pages 201–212. Springer,
2018.

[15] A. Santoro et al. A simple neural network module for relational reasoning. In Advances
in neural information processing systems, pages 4967–4976, 2017.

[16] F. Scarselli et al. The graph neural network model. IEEE Transactions on Neural
Networks, 20:61–80, 2009.

[17] T. Schäfer, P. May, and I. Koch. Computation and Visualization of Protein Topology
Graphs Including Ligand Information. In S. Böcker et al., editors, German Conference
on Bioinformatics 2012, volume 26 of OpenAccess Series in Informatics (OASIcs), pages
108–118, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[18] P. Veličković et al. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

132

