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Abstract. Step size adaptation is an essential part of successful evo-
lution strategies in continuous solution spaces as they moderate between
exploration and exploitation. We propose to learn step sizes evolved with
a σ-self-adaptive (1 + λ)-ES using LSTMs. Based on input sequences of
multi-variate distances between best solutions of successive generations
and their step sizes a long short-term memory network (LSTM) is trained.
The learned distances-step size pairs guide the search of the LSTM-ES,
which is a (1 + λ)-ES with LSTM step size predictions. An experimental
analysis illustrates the behavior of the LSTM-ES on the Sphere function
with different parameter settings and problem dimensionalities.

1 Introduction

For an efficient search in continuous solution spaces, the adaptation of step sizes
has an important part to play. Step sizes, also known as mutation rates, param-
eterize mutation distributions, e.g., the width of the Gaussian distribution in
evolution strategies (ES). Various methods for step size control and adaptation
have been introduced for ES in the past decades, from Rechenberg’s 1/5th suc-
cess rule and self-adaptation, its derandomized variant to evolution path control
and covariance matrix adaptation techniques.

Learning step size adaptation techniques may allow coping with varying so-
lution space conditions. A first step towards this direction is taken in this paper.
We propose to learn step size adaptation strategies with recurrent neural net-
works, i.e., with long short-term memory networks (LSTMs) [5], which have
shown great success in learning time series. We introduce the LSTM-ES that
learns sequences of distances in solution space and step size pairs observed during
the run of a self-adaptive (1 +λ)-ES. Trained with this data the LSTM predicts
optimal step sizes for the (1 + λ)-ES solving the target optimization problem.

This paper is structured as follows. You are reading Section 1. In Section 2
the foundations of ES and ES-based step size control are introduced. Related
work is discussed in Section 3. Section 4 introduces the LSTM-ES sketching the
LSTM algorithm and describing how it is integrated into ES-based search. The
LSTM-ES is experimentally analyzed in Section 5. Conclusions are drawn in
Section 6, where an outlook to prospective research directions is presented.
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2 (1 + λ)-σ-SA-ES

ES are have been introduced by Rechenberg and Schwefel [1] and have developed
to strong blackbox optimization algorithms for continuous solution spaces, i.e.,
to search for an optimal solution x∗ ∈ RN , for which holds

f(x∗) ≤ f(x) ∀ x ∈ RN (1)

in an N -dimensional solution space.
Employing a parental population of solutions, new offspring solutions are gen-

erated based on recombination and mutation. The mutation operator, on which
we focus in this work and which is applied in almost all numerical ES-variants
is Gaussian mutation. It samples from the Gaussian distribution N (0, σ) with
expectation vector 0 and standard deviation σ.

Algorithm 1: (1 + λ)-σ-SA-ES generating training set

1: initialize x,x′

2: repeat
3: for k ∈ {1, . . . , λ} do
4: σk ← mutate σ
5: xk ← mutate x with σk
6: end for
7: x← select best of x1, . . . ,xλ
8: σ ← select best of σ1, . . . , σλ
9: save (log(|x− x′|), σ) in training set

10: x′ = x
11: until termination condition

Algorithm 1 shows the ES used to generate a training set, which is a (1 +
λ)-σ-SA-ES, i.e., a self-adaptive ES, which adapts step size σ automatically
by means of evolution. After initialization, in each generation k step sizes σk
are generated with log normal mutation. These are employed to generate k
mutants xk. The best solution x and its corresponding step size σ are selected
for the following generation. The logarithm of the absolute value of the difference
between the best solution and the best x′ of the previous generation, as well as
the corresponding step size:

(log(|x− x′|), σ) (2)

is added to the training set for the LSTM-ES, see Section 4. The ES terminates
after a maximum number of generations is reached.

For the step size learning process, the (1 + λ)-σ-SA-ES is repeated multiple
times generating the training set of distances and step sizes. For small popula-
tions sizes λ, the old parent may be the best solution leading to zero distance
vectors. It is reasonable to only put patterns into the training set with positive
distance vectors.
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3 Related Work

In ES step size adaptation has an important part to play [9]. Constant mutation
rates and dynamic changes w.r.t. a fixed scheme lack flexibility. Adapting
the step size is advantageous to allow convergence and to moderate between
exploration and exploitation. A successful step size adaptation technique is the
Rechenberg’s 1/5th rule [1], which is based on feedback about the success rate
during the search. Rechenberg’s rule estimates the number of successful offspring
solution and increases the step size in case of success and decreasing it in case
of failure.

Closely related is self-adaptation, which lets the evolutionary search take
place in the space of step sizes, while at the same time searching in objective
space. Derandomized self-adaptation [11] overcomes selection noise, which may
occur in case of small population sizes.

Covariance matrix adaptation evolution strategies (CMA-ES) [4] with vari-
ants [2] adapt the covariance matrix during the search and thus allow sampling
from a flexible multivariate and rotated Gaussian distribution. The CMA-ES
also employs the evolution path principle, which uses a record of generational
information about the employed step sizes.

Natural evolution strategies (NES) [12] learn a gradient policy for the ES.
The NES idea is to maximize the expectation of a solution’s fitness and estimate
the parameter distribution. Gradient ascent in this parameter space leads to
new solution estimates. The Fisher matrix for the natural gradient has to be
derived to achieve optimal NES results.

To the best of our knowledge, recurrent networks and LSTMs have not been
employed for adapting step sizes yet. An approach learning step sizes like the
LSTM-ES is based on reinforcement learning [10]. It employs the fitness as
reward signal for policy updates while learning step sizes. Recurrent networks
predict optima, e.g., in particle swarm optimization (PSO) based search [8]. The
counterpart of employing ES in LSTMs is neuroevolution, where LSTMs are
evolved with evolutionary algorithms [6]. The resulting networks’ performances
share similarities with the standard LSTM.

4 LSTM-ES

Long short-term memory networks (LSTMs) have been introduced by Schmid-
huber et al. [5] for time series prediction. They are recurrent neural networks
with hidden layers and cell states, which are vectors representing the network
state and controlling the network behavior. Cell states are influenced by actions
of gates. LSTMs use a forget gate, which is a small network to allow forgetting
information of past hidden states. An input gate allows writing on the hidden
state and selecting particular information. An update gate updates cell states
and hidden states and thus influences subsequent time steps. LSTMs are trained
with a backpropagation variant called backpropagation through time. Simpler
LSTM variants are gated recurrent units (GRU) [3].
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Algorithm 2: LSTM-ES

1: initialize x,x′,d = 1
2: repeat
3: σ ← exp(LSTM(d))
4: for k ∈ {1, . . . , λ} do
5: xk ← mutate x with σk
6: end for
7: x← select best of x1, . . . ,xλ
8: d = (log(|x− x′|)
9: x′ = x

10: until termination condition

The LSTM-ES is based on a trained LSTM with distance-step size pairs and
applies them in an ES-like algorithmic scheme. The pseudocode is depicted in
Algorithm 2. After generation of a training set with the ES introduced in Section
2 the LSTM is trained with log-distance-σ patterns. After training, the LSTM
runs within the LSTM-ES. A (1 + λ)-ES can use the LSTM for prediction of
optimal step sizes without using extra adaptation or self-adaptation mechanisms,
but with the LSTM predictions based on occurring log-distance-σ patterns. The
predicted step size is used to parameterize the Gaussian mutation. The novel
solution x′ is used as new parent, if its fitness is better than the original parent’s
fitness. These steps are repeated until a termination condition is reached.

The LSTM-ES can be used with any trained LSTM based on past optimiza-
tion processes. We recommend using LSTMs trained with step sizes from similar
problem classes.

5 Experiments

In the following, we conduct an experimental analysis of the LSTM-ES on a
simple test function. We choose a typical benchmark function, i.e., the Sphere
function f(x) = xTx with N = 2, 5, and N = 10 dimensions. For N = 2, 5
the (1+50)-ES runs for 1,000 fitness function evaluations and generates 2-step
patterns that are the basis of the training process. The LSTM uses 100 neurons
for each layer. The optimal number of neurons depends on the solution space
dimensions. For N < 20, 100 neurons turned out to be sufficient in experiments,
but problem-depending adaptations are recommended. The LSTM employs a

Table 1: Overview of ES and LSTM parameters.

ES setting LSTM setting
pop. (1+50) neurons 100
step σ-SA opt. Adam
ffe 1000/10000 epochs 100
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linear activation function, Adam [7] as optimizer, and is trained for 100 epochs.
The LSTM-ES is a (1+100)-ES using the LSTM for step size prediction and
running for 1,000 fitness function evaluations. ES and LSTM-ES use the initial
starting point (1.0, . . . , 1.0). The experiments for N = 10 use 10,000 and 20,000
fitness function evaluations (ffe) for training set generation and for the LSTM-
ES. The ES and LSTM parameters are summarized in Table 1.

Table 2: Experimental comparison of normal ES and LSTM-ES on the Sphere
function f(x) = xTx for N = 2, 5, 10.

optimizer N rep. mean std min max
σ-SA-ES 2 100 5.65e-06 2.57e-05 2.73e-11 2.00e-04
LSTM-ES 2 100 4.52e-07 1.20e-06 2.99e-10 4.05e-06
σ-SA-ES 5 100 6.04e-07 2.08e-06 9.06e-10 1.82e-05
LSTM-ES 5 100 3.40e-08 5.47e-08 1.33e-09 1.94e-07
σ-SA-ES 10 100 1.32e-03 1.80e-03 2.98e-05 1.04e-02
LSTM-ES 10 100 1.18e-02 1.93e-02 6.36e-05 6.09e-02
σ-SA-ES 10 200 1.23e-03 1.83e-03 3.17e-05 1.23e-02
LSTM-ES 10 200 4.95e-03 7.35e-03 6.86e-05 2.54e-02

Table 2 shows the experimental results for N = 2, 5 and N = 10. The results
show that the LSTM-ES is able to learn step sizes reaching a similar quality of
results like the original ES, in some cases even surpassing the performance of
the original ES. The higher the dimensions, the more training data is required:
for N = 10 100 repetitions of the (1 +λ)-σ-SA-ES are not sufficient, but 200 are
required to provide an adequate training set.

6 Conclusions

This paper proposes the LSTM-ES, an ES that employs an LSTM trained on
past optimization processes for learning step size adaptation strategies. It is
based on a training set of log-distances in solution space and step sizes chosen
in a σ-self-adaptive ES. After training the LSTM-ES maps log-distances to step
sizes for Gaussian mutations.

The experimental part has demonstrated that an LSTM-ES is able to learn
efficient step size strategies on the Sphere function and reaches or even overcomes
the results of a σ-SA-ES.

Future research will investigate the question, if further types of input features
can be employed as extensions to sequences of log-distance patterns. Further,
transfer learning from different problem classes will be investigated. For this
sake a database of numerical search processes will be build up. A comparison of
different step size learning approaches will complement future research.
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