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Abstract. In this paper, we present an anomaly detection system employing an
unsupervised learning model trained on the information encapsulated within dis-
tributed vector representations of automotive scenes. Our representations allows us
to encode automotive scenes with a varying number of traffic participants in a vec-
tor of fixed length. We train a neural network autoencoder in unsupervised fashion
to detect anomalies based on this representation. We demonstrate the usefulness of
our approach through a quantitative analysis on two real-world data-sets.

1 Introduction
In this paper, we investigate the information encapsulated within distributed vector rep-
resentations of automotive scenes and if they can be used to detect potentially dangerous
driving situations from just the vector representation. Vector Symbolic Architectures
(VSAs) have an intrinsic mechanism of comparing vectors through the dot product.
However, it is not clear if simply comparing vectors in terms of similarity to, for in-
stance, the mean pairwise-similarity of all known vectors or a subset of vectors consid-
ered “normal” will sufficiently differentiate outliers from the “normal data”. A-priori,
it might not even be clear what vectors belong to the baseline set of normal data or how
to define vectors to be considered as inliers. One option could be to manually define
metrics such as the number of vehicles in the scene or a threshold for the distance be-
tween the vehicles to detect crowded and potentially dangerous situations. However,
such an approach suffers from the typical issues of manual engineering such as biases
introduced by the human designer as well as poor scaling. Therefore, we employ an
unsupervised learning approach based on fully-connected autoencoder neural networks
similar to the one proposed by Chen et al. [1].

Related Work: Anomaly or outlier detection is an important research field that has
been investigated across a variety of application domains using different approaches [2].
In automotive context, the main application domain beside production plant diagnosis
[3] is the detection of abnormal driving situations. In contrast to our work, most of
the current approaches perform anomaly detection based on camera images from the
driver’s perspective (instead of our abstract vectors) trying to detect unusual patterns
[4, 5] or directly accidents [6]. Finally, Chandola et al. [2] present a general overview
of different algorithmic approaches and other applications of anomaly detection.
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Fig. 1: Visualization of the convolutive power representation for 512-dimensional vec-
tors. The left plot depicts a scene from the On-board data-set, while the middle and
right plots visualize the similarity between the representation vector of that scene and
auxiliary comparison vectors created from a sequence of discrete values as heat map
for the target vehicle (middle) and other cars (right).

2 Methods
Data and Preprocessing: In this work, we use two different data sets for training
and evaluation of our system, which we refer to as On-board or D1, which is a pro-
prietary data set containing real-world data gathered during test drives mainly on high-
ways in southern Germany, and Next Generation Simulation (NGSIM) or D2, which is
a publicly available data set recorded using external cameras observing a segment of
approximately 640 m length with 6 lanes on the US-101 freeway in Los Angeles, Cal-
ifornia. Both data sets contain object-lists with a variety of features such as position,
velocity and acceleration but also object type probabilities and lane information. The
On-board data set contains driving data from 3891 vehicles, whereas the NGSIM data
set contains 5930 vehicles. For training and evaluating our model, we split both data
sets into training Ti ⊂ Di and validation data Vi ⊂ Di containing 90 % and 10 % of the
objects respectively to avoid testing our models on vehicles they have been trained with.

Convolutive vector-power: The Semantic Pointer Architecture (SPA) [7] is one spe-
cial case of Vector Symbolic Architectures [8], a family of modeling approaches based
on high-dimensional vector representations. Here, atomic vectors are picked from the
real-valued unit sphere, the dot product serves as a measure of similarity and the alge-
braic operations are component-wise vector addition ⊕ and circular convolution ⊗. In
this work, we make use of the fact that for any two vectors v,w, we can write

v⊗w = IDFT (DFT (v)�DFT (w)) , (1)

where� denotes element-wise multiplication, DFT and IDFT denote the Discrete Fourier
Transform and Inverse Discrete Fourier Transform respectively.
Using Eq. (1), we define the convolutive power of a vector v by an exponent p ∈ R as

vp := ℜ

(
IDFT

(
(DFTj (v)p)

D−1
j=0

))
, (2)

where ℜ denotes the real part of a complex number. Furthermore, we call a vector u
unitary, if ‖v‖= ‖v⊗u‖ for any other v.
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Vector representation: In this paper, we adopt the vector representation for auto-
motive scenes for trajectory prediction [9] with the goal to detect abnormal driving
situations using an autoencoder neural network. We assign a random ID-vector to each
category of dynamic objects (e.g., car, motorcycle, truck) as well as random unitary
vectors X and Y to encode spatial positions. Let (x,y) denote the position of the tar-
get vehicle and (xob j,yob j) the positions of all other visible objects closer than 40 m to
the target (to avoid accumulation of noise), we encapsulate this information in a scene
vector

S = TARGET⊗TYPEtarget ⊗Xx⊗Yy⊕∑
ob j

TYPEob j⊗Xxob j ⊗Yyob j , (3)

where TARGET denotes an additional ID-vector chosen at random to indicate the target
object (relevant for trajectory prediction). Figure 1 visualizes one example scene from
the On-board data-set and its representation vector queried for the target and other cars.

Network architecture and training: In this paper, we train a fully-connected au-
toencoder neural network [1] with 4 hidden layers consisting of 64, 32, 32 and 64 neu-
rons in unsupervised fashion to generate replicates of the original scene vectors. Once
the network is trained on a sufficiently large data set, we can calculate the element-wise
error

εv =

√
1
D

D−1

∑
i=0

(vi− ṽi)
2 (4)

between the original vector v=(v0, . . . ,vD−1) and the replicate vector ṽ=(ṽ0, . . . , ṽD−1)
generated by the neural network autoencoder. Vectors exceeding a certain threshold c
for this reconstruction error, i.e., εv > c will be considered as outliers or anomalies. In
this paper, we use 10 % for the amount of expected outliers within the data set to calcu-
late c and train the network for 100 epochs on the vectors encoding the current scene as
described in Eq. (3)

3 Experiments
Results: Since the data we are using to train the network is unlabeled, i.e., we do
not have any information available which vectors belong to unusual or atypical situa-
tions, we have no way of comparing the results produced by the neural network with
actual ground truth data. Hence, we analyze the anomalies detected by our neural net-
work with respect to certain characteristic values describing the driving situation and
compare them to the values of the complete data set. If this comparison uncovers sig-
nificant differences between the detected anomalies and the entirety of all data samples,
we can conclude that the anomalies are reasonably different and furthermore, that there
is sufficient information encoded in our vector representation to unravel them. For
this analysis, we use the same metrics already used in Mirus et al. [9] to characterize
crowded and potentially dangerous driving situations, namely the distance between the
target and the ego-vehicle, the distance between the target and the closest other vehicle
and the number of other vehicles present in the scene. Figure 2 visualizes the distribu-
tion of these metrics on the set of anomalies produced by the neural network and on all
data samples in the On-board data set.
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Fig. 2: Visualization of the results of the autoencoder neural network used for unsuper-
vised anomaly detection on the On-board data set. The figures show the distribution of
distances between the target and other vehicles (Fig. (a) and (c)) as well as the number
of other vehicles (Fig. (b) and (d)) for situations classified as anomalies.

We observe a clear difference for both, the evaluation of the distances and the number of
other vehicles, between the anomalies detected by our neural network and the complete
set of data samples. Focusing on the distance information, the number of instances with
smaller distances between the ego-vehicle or the closest other vehicle and the target is
significantly higher for the anomalies than for the complete data set. While the mean
distance between the target and closest other vehicle is slightly below 20 m for the
complete data set, the mean distance for the anomalies is 10 m (cf. Fig. 2a) with clear
concentration below 0 m to 15 m (cf. Fig. 2c). We observe a similar distribution for
the distance between the target and the ego-vehicle, where the distances are more or
less equally distributed around the mean of 40 m for the complete data set. For the
anomalies, we observe a concentration of the distances between the target and the ego-
vehicle below 40 m around the mean of 25 m. Regarding the number of other vehicles,
the difference between the complete data set and the anomalies detected by our neural
network is even clearer. For the complete data set, the mean number of other vehicles
within 40 m to the target vehicle is 2, while the total mean number of other vehicles is
around 4. Both numbers are significantly higher for the anomalies with a mean number
of 5 other vehicles within 40 m and a mean of 7 other vehicles in total (cf. Fig. 2b).
Looking at the distribution shown in the histograms in Fig. 2d, the picture becomes even
clearer. There are no situations with less then 3 other vehicles within 40 m to the target
vehicle in the set of anomalies, whereas in this same range fall the majority of samples
of the complete data set. We observe a similar distribution for the total number of other
vehicles in the scene with the anomaly samples having at least 3 and the majority of
examples having at least 4 other vehicles present in the scene. In contrast, the great
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Fig. 3: Visualization of the results of the autoencoder neural network used for unsuper-
vised anomaly detection on the NGSIM data set.

majority of samples from the complete data set has at most 7 other vehicles present and
the overall distribution is somewhat shifted compared to that of the anomalies.
Figure 3 shows a similar analysis for the NGSIM data set with a few systematic differ-
ences. Since the NGSIM data set is recorded with external cameras observing highway
traffic, we only analyze the distance between the target vehicle and the closest other ve-
hicle (see Fig. 3a and 3b). Furthermore, we focus on vehicles within a distance of 40 m
on lanes adjacent to the target vehicle’s lane for the analysis of our anomaly detection
network here as well (see Fig. 3c and 3d). While the differences between anomalies and
the complete data set regarding the distance between the target and the closest other ve-
hicle is not as significant in comparison to the On-board data set, we still observe a
similar tendency for the anomalies to capture situations with smaller distances between
the target and the closest other vehicle. For the number of other vehicles however, we
also observe that the samples detected as anomalies by our autoencoder network tend to
have more vehicles in the target vehicle’s surroundings present than for all the samples
within the NGSIM data set.

4 Discussion
Conclusion: In conclusion, our autoencoder neural network is able to detect a subset
of anomalies consistently for both, the On-board and NGSIM data set, which show
sufficiently significant differences to the complete data set regarding certain metrics.
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The results indicate, that the anomalies detected by the network have a tendency towards
crowded situations with rather small distances between the target vehicle and the other
vehicles in its surroundings.

Future work: The results shown here offer interesting directions for future research.
For instance, we could combine the anomaly detection network based on our vector
representation presented in this paper with the behavior prediction networks proposed
in [9] to decide whether the current driving situation is potentially hazardous and needs
more accurate predictions than less crowded or dangerous situations. Our evaluation
presented in [9] shows that Long Short-Term Memory (LSTM) models employing the
convolutive power representation outperform the other models in such situations par-
ticularly in lateral direction. Furthermore, we could train trajectory prediction models
particularly on lane changes, the outliers and a similar amount of “normal” samples
to create a more balanced training data set. Finally, we could also investigate other
anomaly detection algorithms in addition to the autoencoder models shown here to get
a better understanding about what sort of data samples are actually outliers by evaluat-
ing how different models classify anomalies differently.
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