
Reservoir memory machines
Benjamin Paaßen and Alexander Schulz∗

Machine Learning Group
Bielefeld University, Germany

Inspiration 1, 33619 Bielefeld - Germany

Abstract. In recent years, Neural Turing Machines have gathered atten-
tion by joining the flexibility of neural networks with the computational
capabilities of Turing machines. However, Neural Turing Machines are no-
toriously hard to train, which limits their applicability. We propose reser-
voir memory machines, which are still able to solve some of the benchmark
tests for Neural Turing Machines, but are much faster to train, requiring
only an alignment algorithm and linear regression. Our model can also
be seen as an extension of echo state networks with an external memory,
enabling arbitrarily long storage without interference.

1 Introduction

While neural networks have achieved impressive successes in domains like image
classification or machine translation, standard models still struggle with tasks
that require very long-term memory without interference and would thus benefit
from a separation of memory and computation [1, 2]. Neural Turing Machines
(NTM) attempt to address these tasks by augmenting recurrent neural networks
with an explicit memory to which the network has read and write access [1, 2].
Unfortunately, such models are notoriously hard to train, even compared to
other deep learning models [2].

In our contribution, we propose to address this training problem by replacing
the learned recurrent neural network controller of a NTM with an echo state
network (ESN) [3]. In other words, we only learn the controller for the read and
write head of our memory access as well as the output mapping, all of which
is possible via standard linear regression. To construct the training data for
our read and write head controllers, we only require a standard dynamic time
warping alignment. We call this model a reservoir memory machine (RMM).

Our model can also be seen as an augmentation of echo state networks with
an explicit external memory, such that input information can be stored for ar-
bitarily long times without interference, whereas the maximum memory horizon
for regular echo state networks is limited to the number of neurons in the reser-
voir [3, 4, 5].

In the remainder of this paper, we first refresh the reader’s memory regarding
standard ESNs, then formally define our own model - reservoir memory machines
-, and finally show that our proposed model is sufficient to solve three benchmark
tasks for Neural Turing Machines with much faster training.

∗Funding by the Bielefeld Young Researchers’ Fund and from BMBF within the project
MechML under grant number 01IS18053E is gratefully acknowledged. We also thank Barbara
Hammer for brilliant theoretical insights.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

567

input
~xt

reservoir

W ~ht
U

memory
~mt,1 . . . ~mt,K

write head~xt
~uw

~vw

read head~rtU r

V r

output
~ytV

R

Figure 1: An illustration of reservoir memory machines. We first process the
input (left) with a cycle reservoir with jumps (center left). We then use input
and reservoir activations to control interaction with the memory (center right;
gray connections). Finally, we feed reservoir activations and memory reads to
the output (right).

2 Echo state networks

An echo state network (ESN) [3] is a recurrent network, i.e. the neural activations
~ht ∈ Rm at time t are computed as ~ht = tanh

(
U ·~xt+W ·~ht−1

)
, where ~xt ∈ Rn

is the input at time t, U ∈ Rm×n are the input weights, and W ∈ Rm×m are the
recurrent weights of the network. The output ~yt ∈ RL of the network at time
t is computed as ~yt = V · ~ht, where V ∈ RL×m are the output weights. ESNs
have two distinct characteristics. First, U and W are not learned but kept fixed
after initialization. This means that the activations ~h1, . . . ,~hT can be seen as
a nonlinear preprocessing of the input, which makes learning V a generalized
linear regression problem that can be solved analytically with the pseudo-inverse.
Second, the recurrent weights W must ensure the echo state property, i.e. past
influences must degrade over time [3, 6]. This property is necessary to ensure that
the network’s dynamic is independent of initial conditions and always adjusts
to the input time series. On the other hand, it necessarily limits ESNs to short
term memory tasks. In particular the memory is upper-bounded by the number
of neurons n [3, 4]. This is the key limitation we aim to address.

In this paper, we employ the deterministic ’cycle reservoir with jumps’ scheme
to initialize U and W [6]. In this scheme, the entries of U are set to a constant
value u ∈ (−1, 1) with a sign determined by a fixed, aperiodic sequence (e.g.
the digits of pi), and W is a sparse matrix with off-diagonal cycle connections
wi,i+1 = wc ∈ [0, 1) and longer ’jump’ connections wi,i+l = wi+l,i = wl ∈ [0, 1).
Note that u, wc, wj , and l ∈ N are hyper-parameters of the model. Because this
initialization is deterministic, we can compare different architectures more easily.
In general, however, our architecture is agnostic regarding the initialization.

3 Reservoir memory machines

Our key contribution is an easy-to-train alternative to the Neural Turing Ma-
chine [1]. In particular, we propose to extend an ESN with an explicit memory,
a write head, which can copy inputs into memory, and a read head, which can

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

568

read from the memory. We call this augmented ESN version a reservoir memory
machine (RMM). A sketch of the RMM architecture is shown in Figure 1.

In more detail, the state of our system is now a quadruple (~ht,Mt, kt, lt),
where ~ht are the reservoir activations as before, Mt ∈ RK×n is the current
memory state (of size K), and kt, lt ∈ {1, . . . ,K} are the current position of the
write and read head respectively.

The dynamics of the system are as follows. First, we copy the previous
memory state, i.e. Mt ←Mt−1 (where M−1 = 0). Then, we control the write
head with the value cwt = ~uw · ~xt + ~vw · ~ht, where ~uw ∈ Rn and ~vw ∈ Rm are
learnable parameters. If cwt > 0, we write to the memory, i.e. ~mt,k ← ~xt, and
increment kt ← kt−1 + 1 (re-setting kt to 1 if it exceeds K). Otherwise, we
leave the memory and kt as is. Similarly, in each time step we control the read
head with the vector ~crt = U r · ~xt + V r · ~ht, where U r ∈ R3×n and V r ∈ R3×m

are learnable parameters. If crt,1 = max{crt,1, crt,2, crt,3}, the read head stays in
the same location, i.e. lt ← lt−1; if crt,2 = max{crt,1, crt,2, crt,3}, we increment
lt ← lt−1 +1 (re-setting lt to 1 if it exceeds K); otherwise, we re-set lt ← 1. We
then set the memory read at time t as the ltth row of Mt, i.e. ~rt ← ~mt,lt .

The output of the system at time t is ~yt = V ·~ht +R · ~rt, where V ∈ RL×m
and R ∈ RL×n are learnable parameters. Note that our proposed model is a
strict extension of an ESN because we can simply set R = 0 and thus obtain a
standard ESN. However, we can potentially solve more tasks.

Training: Because the output generation depends on the memory content, our
first step is to train the write and read heads, i.e. the parameters ~uw, ~vw, U r,
and V r. In more detail, we initializeR as the identity matrix (padded with zeros
whenever necessary) and then identify for each output ~yt the earliest input ~xτt
that minimizes the distance ‖R · ~xτt − ~yt‖. Based on this, we generate an ideal
control sequence for the write head cw1 , . . . , cwT where cwt = +1 if t ∈ {τ1, . . . , τT }
and cwt = −1 otherwise. This control sequence serves as our teaching signal for
training ~uw and ~vw via linear regression.

Next, we generate the tensor of all memory states (M1, . . . ,MT) ∈ RT×K×n

as described above. We then align this tensor with the output time series
~y1, . . . , ~yT via a variant of dynamic time warping with the recurrence: dl,t =
‖R · ~mt,l − ~yt‖+min{dl,t+1, dl+1,t+1, d1,t+1}, where the entries in the minimum
correspond respectively to leaving the read-head location as is, incrementing
it, or resetting it to one. The base case of this recurrence is dl,T+1 = 0 for
all l ∈ {1, . . . ,K}. Note that min{d1,1, d2,1} then corresponds to the error we
achieve by optimally moving the read head over the memory and always pre-
dicting the output R ·mt,lt . Accordingly, backtracing yields a teaching signal to
train the read head parameters U r and V r via linear regression.

Finally, we compute the sequence of memory reads ~r1, . . . , ~rT as described
above, which we use to train both V and R via linear regression. Now, be-
cause we change R, the optimal alignments in the previous steps may change as
well. Accordingly, we repeat the training process until the loss increases or until
convergence, yielding an alternating optimization algorithm.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

569

0 50 100

0

1

t

am
pl
it
ud

e
latch task

input
output

0

5

in
pu

t

copy task repeat copy task

0 5
0

5

t

ou
tp
ut

0 5 10

t

Figure 2: An example input and output sequence for all three data sets.

4 Experiments

In our experiments, we evaluate reservoir memory machines (RMMs) on three
data sets that require storage of inputs over long times without interference:

The latch task requires to produce zeros until a spike in the input appears,
after which the model should produce ones. For the next input spike, the model
should switch back to zeros, and so on (Figure 2, left). We use three spikes with
random positions and random sequence lengths of up to 200 time steps.

The copy data set [1] consists of 1-20 time steps with 8 random bits each,
followed by a sequence end token in an additional feature. After this, the goal
is to exactly copy the input while the remaining input is zero (Figure 2, center).

The repeat copy data set [1] extends the copy task by requiring the network
to copy the input sequence multiple times (refer to Figure 2, right).

We compare RMMs to standard ESNs and to a novel variant which we dub
echo state gated recurrent unit (ESGRU). This model uses the dynamic equa-
tions of a gated recurrent units [7] but keeps all weights fixed after initialization.
To ensure that all variance is due to memory access only, we use the same reser-
voir for all networks, namely a cycle reservoir with jumps [6].

We evaluate in a 20 fold crossvalidation, generating 10 sequences per fold
(i.e. 190 training sequences and 10 test sequences). For each model, we used
a 3-fold nested crossvalidation for hyper-parameter optimization via random
search with 10 trials. The detailed experimental code is available at https:
//gitlab.ub.uni-bielefeld.de/bpaassen/reservoir-memory-machines.

The generalization root mean square error (RMSE) of all models on all
datasets is displayed in Table 1. For all datasets, RMMs achieve a low (albeit
nonzero) error, indicating that RMMs are able to solve the tasks. Additionally,
we note that both ESNs and ESGRUs are not able to solve the tasks, because
they have significantly higher errors in all datasets (p < 10−3 according to a
Wilcoxon sign-rank test with Bonferroni correction). Note that a Neural Turing
Machine achieves zero error on all tasks [2].

We investigate the solution strategy of the RMM model in more detail on the

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

570

https://gitlab.ub.uni-bielefeld.de/bpaassen/reservoir-memory-machines
https://gitlab.ub.uni-bielefeld.de/bpaassen/reservoir-memory-machines

Table 1: The average RMSE (± standard deviation) across 20 crossvalidation
folds for all models and all data sets. NTM results are copied from [2].

model latch copy repeat copy

ESN 0.309± 0.049 0.358± 0.030 0.409± 0.038
ESGRU 0.402± 0.116 0.331± 0.011 0.375± 0.018
RMM < 10−3 0.027± 0.025 0.037± 0.067
NTM n.a. < 10−3 [2] < 10−3 [2]

0 500 1,000
0

0.2

0.4

0.6

sequence length T

ru
nt
im

e
[s
]

training time

0 500 1,000

sequence length T

prediction time

ESN
ESGRU
RMM

Figure 3: Runtime results for training (left) and prediction (right) of standard
ESNs, ESGRUs, and RMMs for varying sequence length.

latch task. For this purpose, we use a trained RMM and let it extrapolate to a
much longer sequence (see Figure 4, top) than seen in training (length 1700 vs.
200 with 8 vs. 3 spikes). We note that the RMM extrapolates perfectly (Figure 4,
second row) with an error < 10−3. In more detail, we observe that the model
only writes to memory once, namely storing a 1 at the time of the first spike
(Figure 4, third row), whereas the read head switches position at every spike
(except the first one; Figure 4, bottom), thus producing the desired output.

To evaluate the runtime, we train ESNs, ESGRUs, and RMMs with a reser-
voir of 128 neurons each on a random 8-bit input sequence with varying length,
the output sequence being shifted by one. We measure runtime on a consumer
grade laptop with core i7 CPU. Figure 3 shows the runtime results. We find
that RMMs roughly take 15 times longer to train compared to regular ESNs,
which may be due to more needed linear regression runs and an inefficient align-
ment implementation. Still, even for long sequences we maintain training times
well below a second. Prediction time is roughly comparable to a standard ESN
and faster than an ESGRU. By comparison, training a NTM using the reference
implementation [2] on the copy task took more than 30 minutes.

5 Conclusion

We have introduced reservoir memory machines (RMMs), which augment echo
state networks with an external memory, a write head that copies data from

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

571

0

1
x
t
,y
t

0

1

ŷ t

0

1 mt,1

mt,2m
t,
k

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
1

2

t

l t

Figure 4: From top to bottom: A long sequence from the latch task with the
input as solid, the output as dashed line; the prediction of the RMM; the memoy
entries over time; and the read head position over time.

the input to the memory, and a read head which couples the memory to the
output. We also provided a training algorithm for the write and read heads based
on dynamic time warping and linear regression in an alternating optimization
scheme. As such, our model retains the training simplicity of echo state networks,
but extends its capabilities to some of the benchmark tasks of Neural Turing
Machines. We emphasize that our model is still strictly less powerful because
other benchmark tasks remain out of reach, especially those based on content-
based addressing. Extending our model with such a mechanism is a task for
future work. Further, we still require a formal proof that our proposed model is
strictly more powerful than an ESN.

References
[1] Alex Graves, Greg Wayne, et al. Hybrid computing using a neural network with dynamic

external memory. Nature, 538(7626):471–476, 2016.

[2] Mark Collier and Joeran Beel. Implementing Neural Turing Machines. In Proceedings of
the ICANN 2018, pages 94–104, 2018.

[3] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science, 304(5667):78–80, 2004.

[4] Igor Farkaš, Radomír Bosák, and Peter Gergeľ. Computational analysis of memory capacity
in echo state networks. Neural Networks, 83:109 – 120, 2016.

[5] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Design of deep echo state networks.
Neural Networks, 108:33 – 47, 2018.

[6] Ali Rodan and Peter Tiňo. Simple deterministically constructed cycle reservoirs with
regular jumps. Neural Computation, 24(7):1822–1852, 2012.

[7] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In Proceedings of the EMNLP
2014, pages 1724–1734, 2014.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

572

	Introduction
	Echo state networks
	Reservoir memory machines
	Experiments
	Conclusion

