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Abstract. We develop a framework for risk-sensitive behaviour in
reinforcement learning (RL) due to uncertainty about the environment
dynamics by leveraging utility-based definitions of risk sensitivity. In this
framework, the preference for risk can be tuned by varying the utility
function, for which we develop dynamic programming (DP) and policy
gradient-based algorithms. The risk-averse behavior is compared with the
behavior of risk-neutral policy in environments with epistemic risk.

1 Introduction

We consider the problem of reinforcement learning (RL) with policies risk-sensitive
policies due to epistemic uncertainty, i.e. due to the agent not knowing how
the environment works. Previous work in risk-sensitive RL, focused on aleatory
uncertainty, i.e. due to environmental stochasticity. Epistemic risk-sensitivity
makes more sense in RL, where most uncertainty is due to the lack of information
about the environment, especially for applications such as autonomous driving,
where systems are nearly deterministic. Within a Bayesian utilitarian frame-
work, we develop novel algorithms for policy optimisation, and compare their
performance quantitatively with risk-neutral and aleatory-risk-sensitive policies.

RL is a sequential decision-making problem under uncertainty. The classical
goal is to maximise expected return R ,

∑T
t=1 rt to some horizon T , with the

agent acting in a Markov decision process (MDP). For any given discrete MDP
µ ∈ M, the optimal risk-neutral policy π∗(µ) ∈ arg maxπ E

π
µ[R] can be found

via dynamic programming. Because in RL the µ is unknown, the optimal policy
must take into account expected information gain. In the Bayesian setting, we
maintain a subjective belief in the form of a probability distribution ξ over
MDPs M and the optimal risk-neutral policy solution is given by: maxπ Eπξ [R] =
maxπ

∫
M Eπµ[R] dξ(µ). This problem is generally intractable, as the optimisation

is performed over adaptive policies, which is exponentially large in the problem
horizon. In our paper, instead of maximising expected return, we will instead
maximise a non-linear function of the expected return to induce risk-sensitive
behaviour with respect to uncertainty about µ.
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Program (WASP) funded by the Knut and Alice Wallenberg Foundation and the computations
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(C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).
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1.1 Related work

Defining risk sensitivity with respect to the return R can be done in several ways.
We focus on the expected utility formulation, where the utility is defined as a
function of the return: concave functions lead to risk aversion and convex to
risk-seeking. Within RL, this approach was first proposed by [1], who derived
efficient temporal-difference algorithms for exponential utility functions. However,
the authors only considered aleatory risk, i.e. with respect to MDP stochasticity.
Much work has focused on conditional value-at-risk (CVaR) [2]. Compared to
more traditional risk measures such as Mean-Variance trade-off [3] or expected
utility framework [4], CVaR allows us to control for tail risk. CVaR has been
used for risk-sensitive MDPs in [5].

Epistemic risk has been considered in Robust MDPs. For example [6], obtains
optimal pessimistic and optimistic policies within a set of possible MDPs. A
Bayesian setting is also considered in [7], which decomposes the risk in aleatory
and epistemic components. However, the authors are essentially considering risk
due to variance in individual rewards. Our paper instead considers the risk with
respect to the total return, which we believe is a more interesting setting for
long-term planning problems under uncertainty.

1.2 Contribution

A lot of risk-aware work in RL used different mechanisms for aleatory and
epistemic uncertainty. We consider both under a coherent utility maximising
framework, where the convexity of the utility with respect to the return R
determines risk-seeking or aversion. Applying this utility on the actual or
expected return, we can be risk-sensitive with respect to either aleatory or
epistemic uncertainty respectively. We also introduce two novel algorithms to
handle risk-sensitiveness in MDPs. The first is based on dynamic programming
and we apply it to tabular domains. The latter is based on Bayesian Policy
gradient and we apply it in continuous state spaces. We evaluate our algorithms
on familiar domains with epistemic uncertainty, as well as multi-tasks extensions
of them. These are created by introducing a distribution over the parameters
of the single-task environment, with the agent being in a different sampled
environment at the beginning of each episode. In the multi-task setting, the
agent never knows what task they are solving at the beginning of each episode,
and so inherent epistemic uncertainty remains.

2 Optimal policies for epistemic risk

Under the expected utility hypothesis, risk sensitivity can be modelled [4] through
a concave or convex utility function U : R → R of the return R. Then, for a given
µ, the optimal U -sensitive policy with respect to aleatory risk is the solution
to maxπ Eπµ[U(R)]. In the case where we are uncertain about what is the true
MDP, we can express it through belief ξ over µ. Then the optimal policy is the
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solution to

πA(U, ξ) , arg max
π

∫
M

Eπµ[U(R)] dξ(µ). (1)

However, this is only risk-sensitive with respect to the stochasticity of the
underlying MDPs. We believe that epistemic risk, i.e. the risk due to our
uncertainty about the model is more pertinent for RL. The optimal epistemic
risk sensitive policy maximises:

πE(U, ξ) , arg max
π

∫
M
U
(
Eπµ(R)

)
dξ(µ). (2)

When U is the identity function, both solutions are risk-neutral. In this paper, we
shall consider functions of the form U(x) = β−1eβx, so that β > 0 is risk-seeking
and β < 0 risk-averse. When the policy is risk-seeking optimality is lost and the
agent focuses more on exploration than a risk-neutral agent. On the other hand,
a risk-averse agent prefers exploitation over a risk-neutral agent. In environments
with no risk, the optimal risk-neutral solution can be found by all of the three.

We consider two algorithms for this problem. The first, based on an approx-
imate dynamic programming algorithm for Bayesian RL introduced in [8], is
introduced in Section 2.1. The second, based on the Bayesian policy gradient
(BPG) framework [9], allows us to extend the previous algorithm to larger MDPs
and allows for the learning of stochastic policies. It is detailed in Section 2.2.

2.1 Risk sensitive backward induction

Algorithm 1 is an Approximate Dynamic Programming (ADP) algorithm for
optimising policies in our setting. The algorithm is given for a belief over a finite
set of MDPs, but can be easily extended to arbitrary ξ through Monte-Carlo
sampling, as in [8].

The algorithm maintains a separate Qµ-value function for every MDP µ. At
every step, it finds the best overall policy π with respect to the utility function
U . Then the Vµ of each MDP reflects the value of π within that MDP.

2.2 Bayesian policy gradient

Policy gradient [10] is commonly used in model-free RL, but is also very useful
in model-based settings, and specifically for the Bayesian RL problem, where
sampling from the posterior allows us to construct efficient stochastic gradient
algorithms. Even though BPG [11] is a risk-neutral algorithm, we can extend it
to the risk sensitive setting, by maximising Eq. 2, where we our utility function
models risk sensitivity:

∇θ
1

β
log

∫
M

exp
(
βEπθµ [R]

)
dξ(µ) =

∫
M exp

(
βEπθµ [R]

)
∇θEπθµ [R]dξ(µ)∫

M exp
(
βEπθµ [R]

)
dξ(µ)

(3)

Our choice of policy parametrisation is a softmax policy with non-linear
features. The probability of selecting action a in state s, given current parameters
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Algorithm 1 Epistemic Risk Sensitive Backwards Induction (ERSBI)

Input: M (set of MDPs), ξ (current posterior)
repeat

for µ ∈M s ∈ S, a ∈ A do

Qµ(s, a) = Rµ(s, a) + γ
∑
s′ T ss

′
µ Vµ(s′)

end for

for s ∈ S, a ∈ A do

Qξ(s, a) =
∑
µ ξ(µ)U [(Qµ(s, a)]

end for

π(s) = arg maxaQξ(s, a).
for µ ∈M do

Vµ(s) = Qµ(s, π(s)).
end for

until convergence

return π

θ, is πθ(a|s) = eφ(s,a,θ)∑
a′∈A eφ(s,a′,θ)

, where the features φ(s, a, θ) are calculated by a

feedforward neural network with one hidden layer.

3 Experimental setup

We conduct experiments in two episodic environments, in both single-task and
multi-task settings. In the single-task setting, we expect the epistemic risk-
sensitive algorithms to perform the same as risk-neutral algorithms after con-
vergence, but the aleatory risk policies to be worse. In the multi-task setting,
the agent begins each episode at a different environment, which may have been
seen before, but does not know which environment it is in. Consequently, there
is inherent epistemic uncertainty at the beginning of every episode. Thus, we
expect our methods to outperform both risk-neutral and aleatory-risk methods
with respect to epistemic risk measures in this setting. In both cases, we evaluate
our methods in both discrete and continuous environments and compare with
the aleatoric risk-sensitive algorithm of [1] (ARSBI), as well as the risk-neutral
algorithms: PSRL (c.f. [12]), MMBI [8] and BPG [11].

The discrete environment is Chain [8]. In this environment an agent has
to travel through a chain of states, with the state with the highest reward at the
end of the chain. Traversing to the end is hard as each the agent can “fall” back
to the start with some probability. Our model in this setting uses NormalGamma
priors on rewards and Dirichlet priors on transitions and over tasks.

The continuous state-space environments are based on Stopping problems,
which are common testbeds for experiments dealing with risk-sensitivity [3, 5, 13].
For this problem, we maintain function priors in the form of Gaussian Processes
on the models, together with a hyperprior on the tasks in the multi-task case.
Details of the experimental results and conclusions are presented in Section 4.
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Algorithm 2 Epistemic Risk Sensitive Policy Gradient (ERSPG)

Input: Policy parametrisation θt, ξt (current posterior).
repeat

Simulate to get θt+1

for i = 1 to N do

µ(1), µ(2) ∼ (Mt,Rt)
for j = 1 to M do

τ
(1)
µ(1)

, τ
(2)
µ(1)
∼ πθ, µ(1)

τ
(3)
µ(2)
∼ πθ, µ(2)

end for

end for

θt+1 ← θt − [
∑N
i=0 exp

(
βτµi

(1)
)
τµi

(2)∇θ log πθ(a|s)]/[
∑N
i=0 exp

(
βτµi

(3)
)

]

Deploy πθt+1
and obtain τ ∼ µ, πθt+1

ξt+1 ← ξt, τ

until convergence

4 Discussion and conclusion

Figure 1 shows the results of running the algorithms across the four different
domains. The comparison metrics shown are E[R], the standard maximisation
objective, Uβ(E[R]), which measures the epistemic risk for a given β, as well
CVaRα(R), which is the expected performance of the α-quantile. In short, the
first measures our actual performance, the second our epistemic risk-sensitive
performance and the third our aleatoric risk-sensitive performance. We can
see that in the single-task experiment in Figure 1 (a, left), all methods can
identify the same optimal behavior. Indeed, in this experiment, there is minimal
stochasticity so you would expect their behavior to be similar. In Figure 1 (a,
right) we can see the results of the runs in a multi-task setting. In this setting,
there is inherent epistemic uncertainty and only our proposed method (ERSBI)
is able to find a good risk-averse policy.

In Figure 1 (b, left) we can see the algorithms evaluated in a single-task
continuous state-space environment. As expected, in an environment with no
inherent epistemic uncertainty (ERSPG) will perform similarly to that of the risk-
neutral baseline (BPG). This environment carries significant stochasticity which
can explain why the aleatory risk-sensitive agent behaves differently. Finally, in
Figure 1 (b, right) we evaluated the agents in a multi-task stopping problem.
In this environment there is epistemic uncertainty so we expect the risk-averse
agents to be more cautious.

Overall, we believe that our unified framework for epistemic risk in RL is
useful as it allows us to obtain risk-averse or risk-seeking behavior through a risk
parameter β. We proposed two novel algorithms for controlling epistemic risk in
tabular and continuous state-space domains and have shown why they are useful
to consider in settings with inherent epistemic uncertainty. In general we see
that being sensitive with respect to epistemic risk leads both to good exploration
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(a) Chain (b) Stopping problem

Fig. 1: Expected return (E[R]), Risk-sensitive utility (Uβ) and CVaR for (a)
Chain (left, single-task), (right, multi-task) (b) Stopping (left, single-task), (right
multi-task) for PSRL (posterior sampling), Risk-neutral policies (MMBI/BPG),
Aleatory-Risk policies (ARSBI), and Epistemic-Risk policies (ERSBI/ERSPG)

behaviour in the single task case, as well as excellent risk aversion behaviour
overall. Especially in the multi-task case, we can see that epistemic risk aversion
also leads to excellent performance in terms of the CVaR metric.
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