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Abstract. This paper introduces a variant of the prototype-based gen-
eralized learning vector quantization algorithm (GLVQ) for classification
learning, which is inspired by quantum computing. Starting from the mo-
tivation of kernelized GLVQ, the nonlinear transformation of real data and
prototypes into quantum bit vectors allows to formulate a GLVQ variant
in a (n-dimensional) quantum bit vector space Hn. A key feature for this
approach is that Hn is an Hilbert space with particular inner product
properties, which finally restrict the prototype adaptation to be unitary
transformations. The resulting approach is denoted as Qu-GLVQ. We pro-
vide the mathematical framework and give exemplary numerical results.

1 Introduction
Learning vector quantizers (LVQ) are sparse models for classification learning,
which constitute a promising alternative to deep networks for many applications
[18]. Although heuristically introduced, nowadays LVQ variants are well-defined
in terms of loss functions and respective gradient based optimization schemes
can be applied (Generalized LVQ - GLVQ,[12]). Of particular interest for user
is the advantage of easy interpretability of LVQ networks [21], as this feature is
being required more and more in machine learning [10]. Further, LVQ networks
are proven to be robust against adversarial attacks [11].

Although LVQ networks usually rely on the Euclidean metric to compare
prototype vectors with data vectors, other proximity measures can be applied
[3]. To this end, kernel metrics play an important role. If differentiable kernels
are considered, the kernel trick known from support vector machines (SVM) can
be adopted for GLVQ [13, 19]. Doing so, the data as well as the prototypes
are implicitly mapped into a high-dimensional Hilbert space where the mapped
data form a low-dimensional manifold. This mapping frequently is non-linear
depending on the kernel in use. This implicit non-linear mapping into the po-
tentially infinite-dimensional Hilbert space provides an increased flexibility for
the prototype adaptation, which frequently leads to improved performance com-
pared to standard (Euclidean) LVQ as it also observed to be a key feature for
high performances of SVMs [6]. A disadvantage of this approach, however, is
that the (mapped) prototypes move freely in the Hilbert space and, therefore,
may leave the low-dimensional manifold. Thus the interpretability of the kernel
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LVQ network is reduced because the (mapped) prototypes may observe the data
from ’outside’.

In this contribution we pick up the idea of non-linear data mapping into a
particular Hilbert space but restrict the GLVQ-prototypes to live in that space.
In particular, we transform the data vectors non-linearily into quantum state
vectors and require at the same time that the prototypes are always quantum
state vectors, too. Thus the prototype adaptation has to keep the quantum
state vector property, i.e. prototype adaptations are restricted to be unitary
transformations. We show that this approach is mathematically consistent with
the standard as well as kernel GLVQ and give exemplary application examples.

We introduce a GLVQ for classification of quantum state vectors and de-
scribe the learning dynamic in terms of quantum dynamic transformation. More
precisely, we assume that the data as well as the GLVQ-prototypes are given as
quantum state vectors. The respective prototype adaptation keeps the attraction
and repulsing strategy known to be the essential ingredients of LVQ algorithms
but here based on quantum dynamics. In particular, the adaptation follows
unitary transformations, which ensure reversibility. The resulting algorithm is
denoted as Quantum GLVQ (Qu-GLVQ).

2 Quantum-inspired GLVQ approach

2.1 Standard GLVQ

Standard GLVQ as introduced in [12] assumes data vectors v ∈ V ⊆ Rn with
class labels c (v) ∈ C = {1, . . . , C} for training. Further, a set P = {pk} ⊂ Rn of
prototypes with class labels ck = c (pk) is supposed together with a differentiable
dissimilarity measure d (v,pk) frequently chosen as the (squared) Euclidean dis-
tance. Classification of an unknown data sample takes place as a nearest proto-
type decision with the class label of the winning prototype as response. GLVQ
considers the cost function EGLVQ (V, P ) =

∑
v∈V L (v, P ) for optimization of

the prototypes with the local loss

L (v, P ) = f (µ (v)) (1)

where f is the activation function frequently chosen as sigmoid and

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

is the classifier function µ (v) ∈ [−1, 1] with d± (v) = d (v,p±) is the dissim-
ilarity of a given input to the best matching correct/incorrect prototype p±

regarding the class labels. The function µ (v) delivers negative values for cor-
rect classification. Thus, EGLVQ (V, P ) approximates the classification error an
is optimized by stochastic gradient descent learning regarding the prototypes
according to

∆p± ∝ −∂L (v, P )

∂p±
= −∂fµ (v)

∂µ

∂µ (v)

∂d±
∂d± (v)

∂p±
(3)

as local derivatives. It constitutes a margin classifier and is robust against ad-
versarial attacks [5, 11].
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For the kernel GLVQ (KGLVQ) discussed in [19], the dissimilarity measure
d (v,pk) is set to be the (squared) kernel distance

dκ (v,pk) = κ (v,v)− 2κ (v,pk) + κ (pk,pk)

with the differentiable kernel κ and the respective (implicit) kernel mapping
Φκ : Rn → H into the reproducing kernel Hilbert space H [17]. As mentioned
in the introduction, the implicitly mapped data Φκ (v) form a low-dimensional
manifold DΦ (V ) in the feature mapping space H whereas the prototypes Φκ (pk)
are allowed to move freely in H and, hence may leave DΦ (V ). In this case, the
prototypes recognize the data from outside, which could be a disadvantage for
particular applications.

2.2 Quantum-inspired GLVQ

2.2.1 Quantum bits, Quantum State Vectors and Transformations

Quantum-inspired machine learning gains more and more attention [4, 9, 16].
Following the usual notations, the data are required to be quantum bits (qubits)

|x〉 = α (|x〉) · |0〉+ β (|x〉) · |1〉 (4)

=

[
α (|x〉)
β (|x〉)

]
(5)

with the normalization condition

|α (|x〉)|2 + |β (|x〉)|2 = 1 (6)

defining the Bloch-sphere [22] and

〈x|y〉 = α (|x〉)α (|y〉) + β (|x〉)β (|y〉) (7)

as the dot product calculated by the Euclidean inner product of the amplitude

vectors

[
α (|x〉)
β (|x〉)

]
and

[
α (|y〉)
β (|y〉)

]
. Hence, we have 〈x|x〉 = 1 such that the

qubit distance δ can be calculated as

δ (|x〉 , |y〉) =
√

2 ·
√

(1− 〈x|y〉) . (8)

Transformations U

[
α (|x〉)
β (|x〉)

]
= U |x〉 of qubits are realized by unitary matrices

U ∈ C2×2, i.e. U ·U∗ = E with U∗ is the Hermitian transpose. If U ∈ R2×2

then U has to be orthonormal. Further, the unitary matrices remain the inner
product invariant, i.e. 〈Ux|Uy〉 = 〈x|y〉.

Now we define qubit vectors as |x〉 = (|x1〉 , . . . , |xn〉)T with qubits |xk〉. For
the inner product we get 〈x|w〉Hn =

∑n
k=1 〈xk|wk〉 with 〈x|x〉 = n according to

the normalization condition (6). Thus we get

δ (|x〉 , |w〉) = 2 (n− 〈x|w〉Hn) (9)

as the squared distance between qubit vectors. Unitary transformations of
qubit vectors are realized by block-diagonal matrices according to U(n) |x〉 =
diag (U1, . . . ,Un)·|x〉. Obviously, the quantum spaceHn of n-dimensional qubit
vectors is an Hilbert space with the inner product 〈x|w〉Hn as also recognizeed
in [14, 15].
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2.2.2 The Quantum-inspired GLVQ algorithm

The Quantum-inspired GLVQ approach (Qu-GLVQ) takes qubit vectors |x〉 and
|w〉 as elements of the data and the prototype sets X and W , respectively.
Thus, the dissimilarity measure d± (v) = d (v,p±) in (2) has to be replaced by
the squared qubit vector distance δ (|x〉 , |w〉) from (9). Starting from usual real
data vectors, we take a non-linear mapping Φ : Rn 3 v → |x〉 ∈ Hn to obtain
qubit vectors. In context of quantum machine learning Φ is also denoted as
quantum feature map [15, 14]. This mapping can be realized taking

α (|xl〉) = cos (ξl) and β (|xl〉) = sin (ξl)

keeping in mind the normalization (6) and applying an appropriate squashing
function ϕ : R→ [0, 2π] such that ξl = ϕ (vl) is valid.1 Possible choices are

ϕ (vl) =
2π

1 + exp (−vl)
or ϕ (vl) = π · (tanh (vl) + 1)

as suggested in [7]. The components of the prototype qubit vector are respec-
tively considered as

|wl〉 = cos (ωl) · |0〉+ sin (ωl) · |1〉

with the angle ωl ∈ [0, 2π] as the determining quantity, which form the angle

vector ω = (ω1, . . . , ωn)
T

. Thus the prototype update can be realized adapting
the angle vectors in complete analogy to (3) according to

∆ω± ∝ −∂L (|x〉 ,W )

∂ω±
= −∂fµ (|x〉)

∂µ

∂µ (|x〉)
∂d±

∂δ± (|x〉)
∂ |w±〉

∂ |w±〉
∂ω±

(10)

where δ± (|x〉) = δ (|x〉 , |w±〉) and the componentwise derivatives

∂ |w±〉
∂ω±k

= − cos (ξk) · sin
(
ω±k
)

+ sin (ξk) · cos
(
ω±k
)

(11)

delivers the gradient vector
∂|w±〉
∂ω± . We observe that the unitary transformations

Uk (∆ωk) · |wk〉 =

(
cos (∆ωk) − sin (∆ωk)
sin (∆ωk) cos (∆ωk)

)[
α (|wk〉)
β (|wk〉)

]
(12)

would realize the update ∆ |w±〉 directly in the quantum space Hn. Further, we
can collect all transformations by UΣ

k = ΠN
t=1Uk (∆ωk (t)) where ∆ωk (t) is angle

change at time step t. Due to the group property of orthogonal transformations
the matrix UΣ

k is also orthogonal and allows toc re-calculate the initial state
|wk〉 from the final.

1In this approach we restrict the amplitudes to be α, β ∈ R, which reduces the Bloch-sphere
to a circle. With other words, here the phase information is set to eiφ with φ = 0.
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Dataset N d #C GLVQ Qu-
GLVQ

KGLVQ SVM

WHISKY 1188 401 3 92.5 ±1.9 92.6 ±1.4 86.9 ±2.8 99.3 ±0.7 (|SV |:140)
WBCD 569 30 2 96.8 ±2.7 96.1 ±3.4 94.0 ±3.4 96.5 ±1.5 (|SV |: 43)
HEART 297 13 2 56.9 ±4.0 81.8 ±5.3 84.3 ±5.4 80.4 ±9.5 (|SV |: 97)
FLC1 82045 12 10 92.8 ±0.3 92.0 ±0.4 94.8 ±0.4 97.4 ±0.1 (|SV |: 2206)
PIMA 768 8 2 77.3 ±2.3 75.4 ±2.4 76.4 ±4.6 75.5 ±4.1 (|SV |: 311)

Table 1: Classification accuracies in % and standard deviations for GLVQ, Qu-GLVQ,
KGLVQ, and SVM for the considered datasets (ten-fold cross-validation). For all LVQ-
algorithms only one prototype per class was used. The number of support vectors for SVM is
given by SV . N - number of data samples, d - data dimensionality, #C - number of classes.

3 Numerical Experiments

We tested the Qu-GLVQ algorithm for several data sets in comparison to stan-
dard GLVQ, KGLVQ and SVM, both SVM and KGLVQ with rbf-kernel. The
data sets are a) WHISKY - a spectral data set to classify Scottish whisky de-
scribed in [2, 1], WBCD - UCI Wisconcin Breast Cancer Data Set, HEART -
UCI Heart disease data set, PIMA - UCI diabetes data set, and FLC1 - staellite
remote sensing LANDSAT TM data set [8].2

We observe an overall good performance of QU-GLVQ compared to the other
methods. If kernel methods seem to be beneficial as indicated by KGLVQ and
SVM for HEART, Qu-GLVQ delivers similar results. If SVM yields significant
better performance than LVQ methods, then we have to take into account that
here the SVM complexity (number of support vectors) is much higher than in
LVQ-networks, where the number of prototypes was chosen always to be only
one per class. Further, for WHISKY the KGLVQ was not able to achieve a
classification accuracy comparable to the other approaches, whereas Qu-GLVQ
performed well. A reason could be that the prototypes in the feature mapping
space do not belong to the data manifold in the kernel feature mapping space,
as discussed in sec 2.1.

4 Conclusion

In this contribution we introduced a GLVQ-variant inspired by quantum machine
learning strategies (Qu-GLVQ). Usual data and prototype vectors are replaced
by respective quantum bit vectors as a result of a non-linear mapping. This
approach shows mathematical equivalence to kernel approaches in topological
sense. The resulting adaptation dynamic in Qu-GLVQ is consistent with the
unitary transformations required for quantum state changes. Further investiga-
tions should include modifications of transfer function as proposed in [20] as well
as the consideration of entanglements for qubits and complex amplitudes β ∈ C
for qubits.
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