
On Learning a Control System without
Continuous Feedback

Georgi Angelov∗ and Bogdan Georgiev†‡

Abstract.

We discuss a class of control problems by means of deep neural networks
(DNN). Our goal is to develop DNN models that, once trained, are able to
produce solutions of such problems at an acceptable error-rate and much
faster computation time than an ordinary numerical solver. In the present
note we study two such models for the Brockett integrator control problem.

1 Introduction

The recent work of Breen et al [1] approached the solutions of a chaotic system
(the well-known 3-body problem) through a Multilayer Perceptron architecture
(MLP). There it was shown that an ensemble of solutions given by an appropri-
ate numerical integration scheme can be utilized to train a DNN that provides
acceptable solutions at a fixed computational cost - in fact, after training the
DNN performs much faster than the corresponding numerical solver.

Motivated by this observation, we study a certain class of control problems,
where a non-trivial feature is that one cannot prescribe continuous control pro-
cedures (control law). It is interesting to ask to what extent one could effectively
”learn” the solutions of such control systems. In this direction, we investigate
the well-known Brockett integrator system and explore models for solutions’
learning and prediction 1. As in the case of [1], after training we observe an ac-
ceptable error-rate and much faster computing performance than the numerical
solvers.

1.1 Related Work

The literature on learning techniques, control theory and their interaction is
vast - without aim of being exhaustive we mention a few relevant sources. An
overview and a certain convex approach for neural network models for opti-
mal control are discussed in [2]. We also refer to references therein. It should
be noted that various frameworks and a deep neural network architectures for
stochastic controls by means of recurrent and fully connected layers have also
been proposed.

Concerning the theory of discontinuous control law systems, Brockett [3]
constructs a dynamical system that cannot be asymptotically null stabilized by
a continuous feedback. For this system Krastanov [5] proposes an approach

∗Sofia University.
†Fraunhofer IAIS, the ML2R project and the Research Center for ML, Fraunhofer IAIS.
‡Equal Contribution.
1Code for our experiments is available at: https://github.com/bogeorgiev/ml-and-optimal-

control.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

109

for the construction of a discontinuous feedback control law that asymptotically
stabilizes the system. Clarke [6] uses a ”sample-and-hold” approach based on
nonsmooth control Lyapunov functions and Vdovin et. al. [7] utilize methods
of optimal control theory.

2 Control Systems with and without continuous feedback

Let us consider the following control system:

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, f(0, 0) = 0, (1)

with u(·) ∈ U , closed subset of Rm, and f : Rn×Rm → Rn is a smooth map.
It is well known that if f is linear, the system (1) is globally asymptotically
null controllable if and only if it is stabilizable by a linear feedback [4]. In the
nonlinear case, even for systems with n = m = 1, continuous feedback may not
exits. In the seminal paper [3], Brockett provides a topological condition that is
necessary for the existence of a continuous stabilizing feedback law.

In many areas of control theory and in practice discontinuous feedback arises
naturally. One can easily construct examples that fail to be locally asymptot-
ically stabilizable by continuous feedback, but that are stabilizable by discon-
tinuous feedback. A systems that is null controllable, but does not satisfy the
Brockett necessary condition is [3]:

ẋ = u, ẏ = u, ż = xv − yu, (2)

where (u, v) ∈ R2 and (x, y, z) ∈ R3. This seemingly simple system has become a
benchmark example for nonlinear control methods and for decades many authors
have discovered control strategies for the Brockett integrator (2) as we previously
pointed out.

3 Model Exploration and Experimental Results

3.1 Trajectory Sampling

In order to create the dataset and generate trajectories that approach the origin
we solve numerically an optimal control problem via optimization solver using
Brockett’s integrator as system dynamics. Let us formulate the optimal control
problem:

min

T∫
t0

x2 + y2 + z2dt, s.t. ẋ = u, ẏ = v, ż = xv − yu. (3)

Here at time t0 the starting point is (x0, y0, z0) ∈ R3 and one aims to find
controls (u, v) that steer the system to the origin (0, 0, 0). By transforming the

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

110

(a) An MLP predictor: The current coordi-
nates are fed forward through a fully con-
nected multilayer perceptron to obtain the
corresponding controls.

(b) An LSTM predictor: The individual
one-step MLP predictors are assembled into
an LSTM chain.

Fig. 1: An overview of the control prediction architectures.

optimal control problem (3) to a discrete optimization problem we could obtain
a discontinuous control law that steers the trajectory to null.

We consider the discrete approximation to problem (3) that is obtained by
solving the Brockett intergrator using a Runge-Kutta integration scheme. In [8]
the authors use a s-stage Runge-Kutta scheme and prove convergence and error
rate of O(h2) to the optimal solution. We use a second-order scheme suggested
by [8].

Using an uniform mesh of width h = 1/N, where N ∈ N denotes the number
of steps, the second-stage Runge-Kutta discretization for (3) that we use is:

minh
N−1∑
k=0

(x2k+1/2 + y2k+1/2 + z2k+1/2) (4)
xk+1/2 = xk + h

2uk+1/2, xk+1 = xk + huk+1/2,

yk+1/2 = yk + h
2 vk+1/2, yk+1 = yk + hvk+1/2,

zk+1/2 = zk + h
2 (xkvk+1/2 − ykuk+1/2),

zk+1 = zk + h(xk+1/2vk+1/2 − yk+1/2uk+1/2)

(5)

and (x0, y0, z0) is the initial point. The nonlinear optimization problem (5)
can be numerically solved by various algorithms. We use a limited-memory
quasi-Newton algorithm ”L-BFGS-B” described in [9]. For the generation of the
dataset we sample initial points with coordinates in the interval [0, 1) and for
every random initial point we solve (5). From the solution we obtain the control
strategies uk+1/2 and vk+1/2 for k = 0, ..., N − 1, this are the intermediate
controls that should be used between two mesh points defined by the step h.

In our analysis we use N = 70 and generate a dataset of 5000 trajectories,
generated by the solutions of (5) with different uniformly picked initial points.
We partition the dataset so that 80% are used for training and validation, the
other 20% are used for testing.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

111

3.2 One-step control prediction by means of an MLP

Fig. 2: Trajectory Comparison: First
and Last 20 steps.

Fig. 3: Controls Comparison: First
and Last 20 steps.

We have first tested the one-step pre-
diction capabilities of a Multilayer Per-
ceptron (MLP). The basic architecture
is summarized in Figure (1a). Given
the initial point (x0, y0, z0) of a trajec-
tory, the goal was to learn the corre-
sponding control quantities (u0, v0). To
this end, we used a plain MSE loss func-
tion and, motivated by initial complex-
ity experiments, we have selected an
MLP-architecture consisting of 4 fully-
connected hidden layers with 70 neu-
rons and standard ReLU activations.
We utilized an Adam optimizer and a
learning rate of ∼ 10−4 with batches of
1000 samples. After training, the model
was evaluated on the test set by requir-
ing that the predicted controls steer the
initial spatial point close to the next
spatial point. This is formalized by the
following metric:

M t
1 := ‖(xt1, yt1, zt1)−F

(
MLP(xt0, y

t
0, z

t
0)
)
‖,

(6)

where (xti, y
t
i , z

t
i) denotes the i-th

point of the trajectory t; MLP denotes
the MLP one-step predictor and F de-
notes the map that given a current spa-
tial point and controls uses the system’s
dynamics (i.e. (5)) to compute the next
spatial point. Analyzing M t

1 over the
test set T , we computed a mean of
∼ 0.0129 and standard mean deviation
of ∼ 0.0187 - these could be considered
on an acceptable order of 1/N .

However, initial experiments with
MLP architectures for a multiple-steps
prediction instead of single one-step
prediction appeared to be more chal-
lenging. This is motivation behind aug-
menting the model with a recurrent
structure.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

112

3.3 An LSTM approach for multiple-step prediction

In a way, we assembled the individual MLP one-step predictors into a recurrent
scheme. We opted for a basic LSTM (Long-Short-Term-Memory) model whose
cell computation is sketched in Figure (1b): at each time step t the LSTM
produces a hidden-state H(t) that is fed forward through an MLP one-step pre-
dictor. Among other advantages LSTMs are assumed to be robust against the
vanishing-gradients problem [10]. Given a trajectory {(xi, yi, zi)}N−1

i=0 the LSTM
model is supposed to learn and predict the corresponding controls {(ui, vi)}N−1

i=0 .
We trained the LSTM model in a supervised way using the following loss func-
tion:

L := λ1 MSE
(
{(ui, vi)}N−1

i=0 , {LSTMi}N−1
i=0

)
(7)

+ λ2 MSE
(
{(xi, yi, zi)}N−1

i=0 , {F (LSTMi)}N−1
i=0

)
. (8)

Here LSTMi denotes the predicted controls at the i-th time step; F is the
mapping given by (5) as above and λ1, λ2 are hyperparameters (after experimen-
tation, we set the ratio λ2/λ1 to 3). The motivation for introducing the second
term on the RHS lies in dealing with dynamics F that might have low regularity;
furthermore, intuitively it also speeds up the learning of the controls’ ”spatial
meaning”. We note that given only an initial point (x0, y0, z0), the LSTM model
produces the other trajectory points by using the mapping F : from (x0, y0, z0)
the model computes (u0, v0), then F (u0, v0) gives the next point (x1, y1, z1), and
so the process continues.

After training, we evaluated the metrics M t
i from (6) for each trajectory

point i. To ease the presentation, we first analyzed {M t
i }20i=0 over the test set

and computed mean and standard mean deviation - the results are summarized
in the following table:

i: 0 3 6 9 12 15 18

mean(Mi): 0 0.0259 0.0203 0.0176 0.0159 0.0155 0.0184
std(Mi): 0 0.0136 0.0104 0.0095 0.0079 0.0080 0.0088

The results for the last points {M t
i }70i=50 are summarized in the table:

i: 51 54 57 61 64 67 70

mean(Mi): 0.0027 0.0026 0.0022 0.0025 0.0026 0.0027 0.0035
std(Mi): 0.0016 0.0015 0.0014 0.0015 0.0015 0.0015 0.0021

Similarly to the one-step prediction case the error rates can be seen of the
order of 1/N . A random test sample is visualized in Figures (2) and (3). The red
curves denote the trajectory/controls computed by a numerical solver; whereas
blue curves denote the ones computed by the LSTM model. since the trajectories
converge very quickly to the origin, it eases the visualization to consider the
initial and the last points separately. We note that the controls produced the
LSTM model might exhibit small-scale perturbations, but, however, follow the
trend of the solver-produced controls closely.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

113

4 Conclusion and Further Work

We studied models for one-step and multiple-step predictions for a control system
without continuous feedback. We showed that a reasonable error-rate of the
order of 1/N where N denotes the number of time steps could be produced:
once trained the approach is much more computationally faster than using a
state-of-art numerical solver. In an upcoming work we plan to build upon the
structure of our models, the complexity of the studied problem and theoretical
foundation. We consider the present note as just the beginning step towards
further (both theoretical and practical) work in the subject.

References

[1] Philip G. Breen, Christopher N. Foley, Tjarda Boekholt, Simon Portegies Zwart: Newton vs
the machine: solving the chaotic three-body problem using deep neural networks, preprint,
arXiv:1910.07291.

[2] Yize Chen and Yuanyuan Shi and Baosen Zhang, Optimal Control Via Neural Networks:
A Convex Approach, International Conference on Learning Representations, 2019

[3] R. W. Brockett: Asymptotic stability and feedback stabilization. In R. W. Brockett, R.
S. Millman, and H. J. Sussmann, editors, Differential Geometric Control Theory, pages
181-191. Birkhauser, Boston, 1983.

[4] Sontag, E.: Mathematical Control Theory: Deterministic Finite Dimensional Systems,
Texts in Applied Mathematics 6, Springer-Verlag, New York, Berlin, Heidelberg, London,
Paris, Tokyo, Hong Kong (1990).

[5] Krastanov M.I. (2006) On the Synthesis of a Stabilizing Feedback Control. In: Lirkov
I., Margenov S., and Waśniewski J. (eds) Large-Scale Scientific Computing. LSSC 2005.
Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg.

[6] F. Clarke. Discontinuous feedback and nonlinear systems. In Proceedings of IFAC Conf.
Nonlinear Control (NOLCOS), Bologna, pages 1-29, 2010.

[7] S. A. Vdovin, A. M. Taras’yev, and V. N. Ushakov. Construction of the attainability set
of a brockett integrator. Journal of Applied Mathematics and Mechanics, 68:631-646, 2004.

[8] Dontchev, A. L., Hager, W. W., Veliov, V. M. (2000). Second-Order Runge-Kutta Approx-
imations in Control Constrained Optimal Control. SIAM Journal on Numerical Analysis,
38(1), 202-226.

[9] R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained
Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp.
1190-1208.

[10] Sepp Hochreiter, Jürgen Schmidhuber: Long short-term memory, In: Neural Computation
(journal), vol. 9, issue 8, S. 1735-1780, 1997.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

114

