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Abstract. Recurrent neural networks usually rely on either transient
or attractor dynamics to implement working memory, and some studies
suggest that it requires a combination of the two. These studies intro-
duce attractor states by the supervised training of a network’s feedback
weights. In this work we report the creation of comparable memory states
through unsupervised learning. We introduce attractor dynamics into an
echo state network in a self-organized way by applying a differential Heb-
bian rule to it’s feedback weights. We find that this yields periodic and
quasiperiodic attractors in most cases. We analyse the linearized system
after the learning phase to understand the origin of these attractors, and
connect these findings to other results concerning the dynamical changes
induced by neural plasticity.

1 Introduction

Working memory (WM) is the ability to ”transiently hold and manipulate goal-
related information to guide forthcoming actions” [1]. Thus, in contrast to short-
term memory, it does not mean simple short-term storage, but implies the ability
to incorporate information on the fly in neural computations. These two aspects
have given rise to two principles thought to implement WM in artificial neural
networks: attractor and transient dynamics [1, 2, 3].

Attractor memory mechanisms encode information by increasing the activity
of a subset of neurons. Information is usually stored by introducing a fixed point
attractor into the network state space. Upon presentation of the corresponding
stimulus, the network state is pushed to its basin of attraction and then converges
to a fixed pattern. This mechanism provides means to store information for a
biologically realistic amount of time and is supported by several theoretical and
experimental studies [2]. However, it takes a long time for the network state to
actually reach an attractor. Furthermore, even when the stable state is reached,
fixed points provide no computationally useful dynamics other than the state
the network settles into, given the initial conditions [3].

Models which implement WM through transient dynamics have been intro-
duced under the umbrella term reservoir computing (RC) in the context of ma-
chine learning [4] and computational neuroscience [5]. A reservoir computer is
composed of a nonlinear dynamical system (the reservoir) and a set of input and
output weights. The input weight matrix is used to project an input to the reser-
voir and, as the reservoir itself, remains unchanged. Learning is restricted to the
output weight matrix that is used to linearly combine a target signal from the
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reservoir states. The dynamics of the reservoir are used to provide sufficiently
diverse nonlinear transformations of the input. A suitable reservoir is one that
has only a single globally attracting fixed point in its state space. This property
is known as the echo state property (ESP) [4]. Ensuring the ESP implies that
the performance of a reservoir computer is weak on tasks that require persistent
memory. However, persistent memory can be attained by training additional
units that provide feedback to the reservoir [6, 7, 8]. With the added feedback
loops, the combined system no longer obeys the ESP and fixed point attractors
are introduced into the reservoir state space by means of supervised learning.

From a biological point of view, it seems plausible that the mammalian brain
indeed makes use of attractor and transient dynamics. However, several stud-
ies show that biological neural networks display complex (quasi-)periodic and
chaotic dynamics [9] and do not rely solely on fixed point attractors. A plausible
scheme for the development of such complex memory states is self-organization.
Self-organization, a systems property of ”[...]being strictly determinate in its ac-
tions and yet demonstrate a self-induced change in organization” [10], excludes
supervised learning methods.

In this contribution we report the self-organized emergence of a complex at-
tractor by providing feedback to a random recurrent neural network. In the spirit
of reservoir computing, the RNN serves here as a placeholder for an unmodified
dynamical system. Hence, the proposed mechanism is potentially applicable
to introduce persistent memory states into many of the physical devices that
have recently been proposed as candidate technologies for future neuromorphic
computing devices under the umbrella term physical reservoir computing.

2 Related work

While there are many studies concerning memory mechanisms in RNNs (e.g.
[11]), we base our method of attractor generation on the work of Der & Martius.
In [12] they propose a rule termed differential extrinsic plasticity(DEP) to drive
a robotic agent through a series of self-sustained motor behaviours. DEP makes
use of an inverse model that amplifies perturbations by estimating the causing
motor command. Once the inverse model is trained, its output is correlated with
past sensor values with a differential Hebbian rule [13]. For robots whose sensor
dynamics follow very closely the applied motor commands, Der & Martius set
the inverse model to a one-to-one mapping. Here, we are in a similar situation
as we apply their formalism to an RNN receiving only very weak inputs. Thus,
we omit the inverse model entirely and arrive at differential Hebbian learning,
laid out below. Additional related work has been performed by Ceni et al. [14],
who analyse a network of fixed-point attractors extracted from RNNs. Contrary
to our approach, this approach is not self-supervised.
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Fig. 1: Schematic illustration of the proposed system.

3 Methods

We consider echo state networks (ESNs) as a reservoir and equip them with
feedback connections that are trained using differential Hebbian learning (DHL).
ESNs and DHL are quickly reviewed in this section.

3.1 Echo state networks (ESNs) with trainable feedback weights

Echo state networks [4] have been introduced as models for networks of rate-
coded neurons with a tanh activation function. In the discussion below, we omit
the input and output weights, as we are not combining the reservoir states to
form a target signal and the only input that is applied are noise and bias terms
that are injected directly into the neurons. Training is restricted to additional
feedback weights that project from the states and back into the reservoir. Con-
trary to most approaches to trained feedback in RC, our feedback weights have
the same dimensions as the reservoir weights in order to keep the setting of [12].

The update equation for the system is thus given by

x(t+ 1) = tanh (Wx x(t) + Wzx(t) + bx) + ξ(t+ 1). (1)

where Wx is the Nx × Nx reservoir weight matrix that is randomly initialized
and Wz are the Nx ×Nx feedback weights initialized to 0. bx ∼ N (0, 10−3) is
the vector of Nx biases that are applied to the neurons in each time step. ξ is
Nx-dimensional Gaussian noise drawn i.i.d. from N (0, 10−4) at each time-step.

To keep the time it takes for an attractor to emerge low and ease computation
we chose a small reservoir size of Nx = 20 neurons, drawing Wx from the unit
normal distribution N (0, 1). We also make the network sparse and randomly set
90% of the weight matrix to 0. To ensure the echo state property, the weights
were rescaled such that their spectral radius was ρ(Wx) = 0.95.

3.2 Differential Hebbian learning (DHL)

Differential Hebbian learning [13] correlates the time derivatives of neuronal
activations at successive timesteps. Hence,

∆W(t+ 1) = εẋ(t+ 1)ẋ(t)T , (2)

where ε is a learning rate, x(t) is the vector of neuronal activations at time t and
ẋ(t) are their time deriatives. Here, as we are dealing with a time-discrete system
they are the finite differences ẋ(t) = x(t) − x(t − 1). To prevent the feedback
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weights from growing unboundedly we follow [12] and use weight decay, such
that

∆W(t+ 1) = ε
(
ẋ(t+ 1)ẋ(t)T −W(t)

)
(3)

and in addition normalize the weights to have a Frobenius norm of 1:

W← W

‖W‖+ 10−12
. (4)

4 Results
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Fig. 2: Top Input current to a selected reservoir neuron (noise + bias). Bottom
Activation of the selected reservoir neuron.

We trained 50 ESNs using the proposed learning rule.Each ESN was run
for T = 10000 time steps, of which the first 100 were discarded to wash out
initial conditions. Adaptation of the feedback weights was switched on until
time step 7500. Then the trained system was run for another 2500 timesteps
with the input noise still applied and activations were inspected to determine
the characteristics of the induced attractor.

Half of the 50 ESNs displayed periodic or quasi-periodic activations after
training. 21 showed 2-periodic cycles in which the neuron activations are alter-
nating between −1 and 1. Four networks still displayed fixed point dynamics.

Each attractor can be associated with an eigenvalue of the combined systems
dynamics linearized around the origin - the systems Jacobian. For standard
ESNs the Jacobian reduces to the reservoir weight matrix Wx. By linearization
of the ESN with trained feedback connections we thus obtain the linear system:

x(t+ 1) = [Wx + Wz] x(t) + bx. (5)

Figure 3 shows the eigenspectrum of reservoir and feedback weights, as well as
their sum for selected experiments. The spectrum clearly shows characteristics
of two types of bifurcations leading to the observed periodic activations: (a) a
Neimark-Sacker bifurcation, the discrete version of a Hopf bifurcation, in which
a fixed point changes stability and gives rise to a limit cycle via a pair of complex
conjugate eigenvalues crossing the unit circle. (b) A period-doubling bifurcation
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Fig. 3: Eigenvalues of Wx, Wz and Wx + Wz in the complex plane for ESNs
with (quasi-)periodic (a) and 2-periodic (b) dynamics after adaptation of Wz.
The observed periods larger than 2 were 3, 4 and 6.

in which a stable fixed point - a cycle with period one - doubles its period and
turns into a 2-periodic orbit [15].

To see how the learning rule introduces the observed dynamics it helps to
write the derivatives of neural activations as finite differences in Equation (2).
Expanding, we get

∆W(t+ 1) = ε
[
x(t+ 1)x(t)T + x(t)x(t− 1)T − x(t)x(t)T − x(t+ 1)x(t− 1)

]
,

(6)
which we identify as Hebbian terms with different signs. The terms with positive
sign are temporally asymmetric, correlating activations at successive timesteps.
Learning rules of this kind have been found to initiate a quasiperiodic route
to chaos in RNNs[16]. The first term with a negative sign is a classical anti-
Hebbian term. These rules are used to decorrelate neural activity by decreasing
the connection strengths of simultaneously active neurons [17] and have been
linked to criticality in [18]. This combination of terms gives a hint at DHL’s
destabilizing effect. It increases synaptic strength between successively active
neurons while decreasing synaptic strength between those active simultaneously,
rendering the two sets largely disjoint. This behaviour likely leads to oscillations
which grow until they are stabilized by the tanh. A central role is taken by the
normalization, which not only keeps the feedback weights bounded but also
scales them up significantly during the early stages of learning. This leads to an
immediate loss of the origin’s stability. It is remarkable though, that stability is
lost via a single pair of eigenvalues and not a general scaling of the spectrum as
would be the case if we just increased the spectral radius.

5 Conclusion

We applied a variant of the DHL rule proposed by Der & Martius [12] on the
feedback weights of ESNs and investigated the resulting system dynamics. We
found the rule to result in the emergence of (quasi-)periodic attractors in the
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majority of cases. These correspond to a bifurcation connected to an eigenvalue
of the system’s Jacobian, which makes them in a sense natural to the system.
Self-organized memory states are beneficial, because they exploit the natural
dynamics of a system at hand - be it an RNN, or a physical system - while im-
posing as few constraints as possible on it. Our approach therefore offers promise
for introducing natural dynamic attractors as memory-providing mechanisms in
physical substrates used in reservoir computing setups. A more in-depth study
of the system evolution with the DHL rule may also provide insights into how
the human brain achieves such vast memory spans and fast computations.
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