
Linear Graph Convolutional Networks

Nicolò Navarin, Wolfgang Erb, Luca Pasa and Alessandro Sperduti ∗

University of Padua - Department of Mathematics “Tullio Levi-Civita”
via Trieste 63, 35121, Padua - Italy

Abstract. Many neural networks for graphs are based on the graph con-
volution operator, proposed more than a decade ago. Since then, many
alternative definitions have been proposed, that tend to add complexity
(and non-linearity) to the model. In this paper, we follow the opposite
direction by proposing a linear graph convolution operator. Despite its
simplicity, we show that our convolution operator is more theoretically
grounded than many proposals in literature, and shows improved predic-
tive performance.

1 Introduction

In the last few years, there has been an increasing interest in machine learning
models able to deal with graph-structured data, including kernel methods [1] and
neural networks. The idea of Graph Neural Networks (GNNs) is to define a neu-
ral architecture that follows the topology of the graph. Then a transformation
is performed from the neurons corresponding to a vertex and its neighborhood
to a new hidden representation, that is associated to the same vertex (possibly
in another layer of the network). This transformation depends on some parame-
ters, that may be shared among all the vertices, obtaining Graph Convolutional
Networks (GCNs). All these models share the intuition that non-linearities are
essential to obtain methods with high accuracy. Recently, [2] put this concept
into discussion, showing that removing the non-linearities from a popular GCN
model actually did not impact much on the resulting predictive performance.

In this paper, we take a further step in this direction: we start from the
theoretical foundations of graph convolution (GC), i.e. graph spectral filters,
and define a theoretically grounded linear graph convolution layer. We show
that the resulting Linear GCN actually performs better than many approaches in
literature, at least on the semi-supervised node classification tasks we considered,
while being very fast to compute.

2 Background and Related Works

Let G = (V,E,X) be a graph, where V = {v0, . . . , vn−1} denotes the set of
vertices (or nodes) of the graph, E ⊆ V × V is the set of edges, and X ∈ Rn×c

is a multivariate signal on the graph nodes with the i-th row representing the
attributes of vi. We define A ∈ Rn×n as the adjacency matrix of the graph, with
elements aij = 1 ⇐⇒ (vi, vj) ∈ E. Note that the method presented in this

∗This work has been supported by the University of Padova, Department of Mathematics,
DEEPer project.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

151

paper can be applied also in the case of weighted edges, i.e. when aij ≥ 0. Let
also D ∈ Rn×n be the degree matrix where the diagonal elements are defined
as dii =

∑
j aij , and L the normalized graph laplacian defined by L = I −

D− 1
2 AD− 1

2 , where I is the identity matrix. In this paper, we deal with the
problem of semi-supervised learning on the nodes of the graph G, and we focus
on neural networks models. The first definition of neural network for graphs has
been proposed in [3]. More recent models have been proposed in [4, 5]. Both
works are based on an idea that has been re-branded later as graph convolution
or neural message passing. The derivation of the graph convolution operator
originates from graph spectral filtering [6].

For a fixed graph G, let x : V → R be a signal on the nodes V of the
graph G, i.e. a function that associates a real value to each node of V . We will
represent such a signal as a vector x ∈ Rn. The graph convolution operator
is usually defined in terms of the graph Fourier transform, using an analogy to
classical Fourier analysis in which the convolution of two signals is calculated as
the pointwise product of their Fourier transforms. The graph Fourier transform
on G is given in terms of the eigenvalue decomposition L = UΛUᵀ of the
graph Laplacian L. The rows {u0, . . . ,un−1} of the matrix U form a basis of
orthonormal eigenvectors of the Laplacian L and provide a Fourier basis for
the signals on G. For a signal x, the Fourier transform of x is then defined
as x̂ = Uᵀx. Further, the inverse Fourier transform given by U enables us to
recover the signal x as x = Ux̂. Using the graph Fourier transform to switch
between spatial and spectral domains, the graph convolution between a filter f
and a signal x is defined as:

f ∗G x := U
(
f̂ � x̂

)
= UF̂Uᵀx. (1)

Here, we reformulated the Hadamard product f̂ � x̂ in matrix-vector notation as
f̂ � x̂ = F̂x̂, by applying the diagonal matrix F̂ = diag(f̂). The diagonal matrix
F̂ and, thus, the spectral filter f can be designed in various different ways. The
simplest way would be to define FΘ as a non-parametric filter. However, such a
filter grows in size with the data, and it is not well suited for learning. A better
option is to use a polynomial parametrization based on powers of the spectral
matrix Λ, such as F̂Θ =

∑k
i=0 θiΛ

i. This filter has k + 1 parameters to learn,
and it is spatially exactly K-localized. One of the main advantages of this filter
is that we can formulate the convolution explicitly in the graph domain:

fΘ ∗G x = UF̂ΘUᵀx =

k∑
i=0

θiUΛiUᵀx =

k∑
i=0

θiL
ix. (2)

Real-world problems typically involve graphs with millions of nodes: in this case,
it is prohibitive to calculate the eigendecomposition of L and a filter of the form
in eq. (2) has clear advantages compared to a spectral filter given in the form of
eq. (1).

The parametrization of the polynomial filter in eq. (2) is given in the mono-
mial basis. Alternatively, [6] proposes to use Chebyshev polynomials as a poly-

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

152

nomial basis to improve the numerical stability. In [7], the authors propose to
fix the order K = 1 in eq. (2) to obtain a linear first order filter for each graph
convolutional layer in a neural network. These simple convolutions can then be
stacked in order to improve the discriminatory power of the resulting network.
Generalizing the definition to a signal X ∈ Rn×c and using m filters, [7] derives
the following definition for the k-th GCN graph convolutional layer:

H(k) = σ(D̃− 1
2 ÃD̃− 1

2 H(k−1)Θ), (3)

where Ã and D̃ are the renormalized adjacency and degree matrices (see [7]),
Θ ∈ Rc×m (m being the number of neurons in the k-th layer), H(0) = X and σ
is a nonlinear activation function, typically ReLU (for multi-class classification
in the last layer ReLu is usually replaced by the softmax function).

In the last few years several models inspired by the graph convolution have
been proposed. Graph Attention Networks [8] exploit a different convolution
operator based on self-attention. Fast GCN [9] uses node sampling to define
a fast convolution operator, suited for the inductive setting. Graph Invariant
Networks (GIN) [10] and [11] adopt a more powerful graph convolution opera-
tor. LNet and AdaLNet [12] exploit filters learned on an approximation of the
Laplacian matrix. Deep Graph InfoMax (DGI) [13] trains a GCN in an unsu-
pervised setting to obtain general node embeddings. GNN with ARMA filters
(ARMA) [14] defines an ARMA filter for graph convolution.

2.1 Simple Graph Convolution

In [15], a simplification of the graph convolution operator in eq. (3) is proposed,
dubbed Simple Graph Convolution (SGC). The idea is that perhaps the nonlin-
ear operator introduced by GCNs is not essential. However, stacking multiple
GC layers has an important effect on the locality of the learned filters in that,
after k GC layers, the hidden representation of a vertex considers information
coming from the vertices up to distance k, i.e. the filters on the k-th layer are
k-localized. Let us rewrite H(k) = SH(k−1)Θ(k), where S = D̃− 1

2 ÃD̃− 1
2 . If we

stack k such layers without any non-linearity, and apply a softmax classifier at
the end, the output after k hidden layers is:

Y = softmax(SkXΘ). (4)

This is possible because the SGC model is linear, therefore we can apply the
reparametrization Θ = Θ(0) · · ·Θ(k), where Θ(0) ∈ Rc×m0 , Θ(i) ∈ Rmi−1×mi ,
∀i ∈ [1 . . . k − 1] and, Θ(k) ∈ Rmk−1×m . The great advantage of this model
is a reduced number of parameters compared to classical graph convolution.
Moreover, Sk can be computed only once, with a dramatic speedup compared
to GCNs.

The SGC formulation has an interesting interpretation. We can think about
having a fixed feature extractor / representation for the graph (X̄ = SkX) and
a simple multinomial logistic regression applied to it (Y = softmax(X̄Θ)). The
training of the model reduces to training a standard softmax classifier.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

153

3 Linear Graph Convolutions

In this section we present the main contribution of this paper, namely the defi-
nition of a Linear Graph Convolution layer.

Let us consider the SGC formulation in eq. (4). We can notice that the
output depends just on the k-th exponentiation of S. This is in contrast with
previous proposals, and with approximation theory, that suggests to consider all
monomials up to a maximum order, e.g. polynomial filters, such as the one in
eq. (2). We propose an alternative definition for a Linear Graph Convolution
operator (LGC), that we define as:

Y = softmax(
k∑

i=0

αiS
iXΘ). (5)

Note that the difference compared to SGC is the introduction of skip con-
nections from each layer to the last one, that is a merge layer implementing
the sum operator, followed by a softmax activation. Moreover, we further limit
the number of parameters of our model, forcing Θ = Θ(i) for all 0 ≤ i ≤ k,
and including a single multiplicative weight for each component of the sum. In
this way, the network has a simple way to downweight (or to put to zero) the
contributions of higher order exponentials of S, making the hyperparameter k
controlling the number of layers easy to tune (the higher the better).

It is possible to define the graph Fourier transform in terms of its (normal-
ized) adjacency matrix, instead of its Laplacian [16]. In this setting, the graph
convolution becomes:

fΘ ∗G x = UF̂ΘUᵀx =

k∑
i=0

αi(D
− 1

2 AD− 1
2)ix.

Also the definition of Linear Graph Convolution remains similar to eq. (3), using
A and D instead of Ã and D̃. Even though we observe similar results, from
preliminary results the latter formulation seems more robust. Our final model
formulation, that we refer to as Linear Graph Convolutional Network (LGCN),
is then:

Y = softmax(
k∑

i=0

αi(D
− 1

2 AD− 1
2)iXΘ). (6)

4 Experiments

In this section, we present our numerical experiments in the setting of semi-
supervised node classification. Concerning our proposed method, we use a single
Linear Graph Convolution layer (detailed in Section 3), followed by a softmax
activation function as reported in eq. (6). We solve the resulting optimization
problem with the Adam algorithm (a variant of stochastic gradient descent with
momentum and adaptive learning rate). We used early stopping (with the pa-
tience set to 100) and model checkpoint, monitoring the loss on the validation

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

154

Method/Dataset Cora Citesser PubMed
GCN [7] 81.4±0.4 70.9±0.5 79.0±0.4
GAT [8] 83.3±0.7 72.6±0.6 78.5±0.3

FastGCN [9] 79.8±0.3 68.8±0.6 77.4±0.3
GIN [10] 77.6±1.1 66.1±0.9 77.0±1.2
LNet [12] 80.2±3.0 67.3±0.5 78.3±0.6

AdaLNet [12] 81.9±1.9 70.6±0.8 77.8±0.7
DGI [13] 82.5±0.7 71.6±0.7 78.4±0.7

ARMA [14] 83.4±0.6 72.5 ±0.4 78.9 ±0.3
SGC [2] 81.0±0.0 71.9±0.1 78.9±0.0

LGCN (k) 85.0±0.3 (10) 72.9±0.3 (5) 80.2±0.4 (10)

Table 1: Accuracy comparison of our proposed method (LGCN) against different
state-of-the-art methods in literature on three node classification datasets.

set. We set the maximum number of epochs to 500. Moreover, we validated the
hyper-parameters of our model using the accuracy on the validation set. We vali-
dated the locality k in the set {3, 5, 10, 20, 50}. Note that, unlike many competing
methods, our model does not need to specify a number of neurons of the hidden
projections, since the model uses only one parameters matrix Θ ∈ Rc×m, where
m is the output size. We then validated the learning rate in {0.01, 0.02, 0.05} and
the weight decay (corresponding to l2 regularization) in {5e−4, 5e−3, 5e−2, e−2}.
We report the average and standard deviation over 10 runs of our method. We
consider three widely adopted datasets of node classification following the same
setting as [7]: Cora, Citeseer, Pubmed. Each dataset is a graph, where nodes
represent documents and node features are sparse bag-of-words feature vectors.

We compare our model to many state-of-the-art approaches presented in
Section 2. We use the training/test/validation splits from [7]. In Table 1
we report the results of our comparison. We can see that our proposed model,
though not nearly as complex as many competing ones, shows the best predictive
performance in all the three considered datasets. Compared to other neural
models, our approach seems to be very stable in that it tends not to overfit on
the validation set, i.e. the validation loss decreases with the test loss. Moreover,
it seems pretty robust to the choice of its only hyper-parameter k, inasmuch
values higher than the optimal one do not significantly degrade the performance
(not shown for lack of space).
A note about computational times. Since our proposed model is linear (and

(D− 1
2 AD− 1

2)kx can be pre-computed similarly to Skx for SGC, see Section 2.1),
its computational requirements are comparable to the ones of SGC, that are
orders of magnitude faster with respect to the other (non-linear) approaches
in literature. To give an idea of the computational times, on the machine we
adopted for our experiments (equipped with 2 Intel R©Xeon R©CPU E5-2630L v3
and a GPU Nvidia Tesla V100) our approach takes in total 18 seconds for a
single run with k = 20 on the Cora dataset. Most of the time is spent on
reading the dataset, saving the models on disk and on pre-computing the matrix

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

155

exponentiation, since each epoch of training takes only 0.01 seconds. With
k = 50 it takes 43 seconds in total, with 0.04 seconds per epoch.

5 Conclusions and Future Works

We proposed a linear graph convolution layer, that is defined as a weighted
sum of monomial filters in the graph spectral domain. We showed that, in the
considered datasets, such a simple approach outperforms all the (more complex)
graph convolution definitions in literature, while being orders of magnitude faster
than most of them. In the future, we plan: i) to extend our experimental
comparison to other datasets and to the graph classification setting; ii) to explore
more complex convolutional filters such as exponential filters.

References

[1] Nicoló Navarin and Alessandro Sperduti. Approximated neighbours minhash graph node
kernel. In ESANN, pages 281–286, 2017.

[2] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. Simplifying Graph Convolutional Networks. ICML, feb 2019.

[3] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classifica-
tion of structures. IEEE Trans. Neural Networks, 8(3):714–735, 1997.

[4] Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[5] F. Scarselli, M. Gori, Ah Chung Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. In Neural Information Pro-
cessing Systems (NIPS), jun 2016.

[7] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. In ICLR, pages 1–14, 2017.

[8] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. In ICLR, 2018.

[9] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with Graph Convolutional
Networks via Importance Sampling. In ICLR, 2018.

[10] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph
Neural Networks? In ICLR, 2019.

[11] Dinh V. Tran, Nicolò Navarin, and Alessandro Sperduti. On Filter Size in Graph Convo-
lutional Networks. In IEEE SSCI, Bengaluru, India, 2018.

[12] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S. Zemel. LanczosNet: Multi-
Scale Deep Graph Convolutional Networks. In ICLR, 2019.

[13] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and
R Devon Hjelm. Deep Graph Infomax. In ICLR, 2019.

[14] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi. Graph Neural
Networks with convolutional ARMA filters. arXiv preprint, jan 2019.

[15] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150,
2011.

[16] Aliaksei Sandryhaila and José M. F. Moura. Discrete Signal Processing on Graphs. IEEE
Transactions on Signal Processing, 61(7):1644–1656, apr 2013.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

156

