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Abstract. We propose a deterministic initialization of the Echo State
Network reservoirs to ensure that the activation of its internal echo state
representations reflects similar topological qualities of the input signal
which should lead to a self-organizing reservoir. Human actions encoded
as a multivariate time series signal are clustered before using the clus-
tered nodes and interconnectivity matrices for initializing the S-ConvESN
reservoirs. The capability of S-ConvESN is evaluated using several 3D-
skeleton-based action recognition datasets.

1 Introduction

Current research in human action recognition (HAR) focuses on the challenge
for efficient and effective modeling the temporal features of human actions in
3-dimensional space. Echo state networks (ESNs) are one suitable method for
encoding the temporal context due to its short-term memory property. The ran-
dom assignment of the ESN’s input and reservoir weights reduces the compu-
tational complexity compared to backpropagation but also increases instability
and variance in generalization [1]. Using self-organizing kernel networks in the
formation of ESN reservoirs ensures that the activation of its internal echo state
representations reflects similar topological qualities of the input signal, acting
as a feature map which should lead to a self-organizing reservoir [2]. Inspired
by the notion that input-dependent self-organization is decisive for the cortex to
adjust the neurons according to the distribution of the inputs [3], the potential
of unsupervised self-organizing learning seems to be one of the most encouraging
and the most biologically plausible.

This work proposes an approach to implement a self-organizing kernel net-
work in performing deterministic initialization of the input weights and recurrent
hidden weights in the ESN stage. This paper is organized as follows: Section
2 briefly discusses the implementation of self-organizing kernel networks, while
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Section 3 reports the results of a benchmarking experiment using several 3D-
skeleton-based HAR datasets, as well as the effects of manipulating the SOM
hyperparameters. Concluding remarks and future perspectives are drawn in
Section 4.

2 Self-Organizing Kernel-based Convolutional Echo State
Networks (S-ConvESN)

Fig. 1: Implementation of self-organizing kernel-based reservoirs in multi-step,
multi-channel convolutional Echo State Network with 5 channels, 2 filters, and
2 time scales.

The general process of the S-ConvESN is shown in Figure 1. Each channel
corresponds to the joint coordinate trajectories for a single body part. Clustering
and convolution were performed separately for each channel.

2.1 Self-Organizing Kernel-Based Network

Self-organizing maps (SOM) [4] consist of a clustered topology of nodes from un-
supervised training of a dataset, each node representing a sufficiently dissimilar
training sample or archetype, while sufficiently similar training samples were of-
ten represented by one node or a cluster of nodes. The generated maps preserve
the topological properties of the input space at a significantly-reduced dimen-
sionality. According to the stochastic resonance theory, adding noise prior to
clustering would speed up convergence in a centroid-based clustering algorithm
[5]. Assuming x(t) represents the joint coordinates at a single time instance t,
clustering was conducted as follows:

z(t) = x(t) +
η

t2
I (1)

CIM(z(t), wj , σj) = [κσj
(0)− κσj

(z(t)− wj)]
1
2 (2)

b = arg min
j∈J

[CIM(z(t), C, S)] (3)

where η = [0, 1] controls the magnitude of the noise, and the noisy signal z(t)
would have progressively less noise over time, CIM is the correntropy-induced
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metric between the z(t) and node j calculated using a Gaussian kernel func-
tion κσj

[6], σj is the kernel bandwidth, S is the vector of individual kernel
bandwidths, wj is the weights for node j, b is the index of the best-matching
node, and C is the self-organized centroids with J nodes. Nodes are added and
updated using Hebbian rules:

{
wm = wm + εm(x(t)− wm) if CIM(z(t), wb, σb) <= V

K ← K + 1, wK = x(t), else
(4)

where m represents the indices of the best-matching node and its topological
neighbors, V is the vigilance threshold, and εm is the learning rate where the
best-matching node is updated much faster than its neigbors. A sparse intercon-
nectivity matrix is constructed by incrementing edges between the best-matching
node b1 and second-best matching node b2, ∆E(b1, b2) = 1. On conclusion of
the clustering, the node centroids C and the interconnectivity matrix E were
extracted to be used for initializing the reservoir of the ConvESN [7].

2.2 Convolutional Echo State Network

The architecture of the S-ConvESN consists of three layers; the input weight
layer W in, the reservoir layer W res, and the output weight layer W out. Given
a time-series input u = (u(0), ..., u(T − 1)), an initial state x(0) ∈ RN in the
reservoir, and an output series y = (y(0), ..., y(T − 1)), the update equation for
the system is given as:

x(t+ 1) = f(W resx(t) +W inu(t+ 1)) (5)

where W in is initialized using the clustered centroid weights C rescaled to the
input scaling parameter Is = 0.1, while W res is initialized using the intercon-
nectivity matrix E rescaled to [−0.5, 0.5] and multiplied by the Spectral Radius
parameter Sr = 0.99 to observe the echo state property [8].

Multiscale temporal invariance is maintained using max-over-time pooling,
and multiscale features are derived from echo-state representations (ESR) using
multiple filters widths and feature maps. Assuming wkj ∈ Rk×N denotes the
j-th filter with k-width, the convolution result with wkj is given as:

ckj = (c0, c1, ..., cT−k+1:T )T (6)

cm = f(
∑
i

αikj · (wkj ∗ zim:m+k−1) + b) (7)

where m = [1, 2, ..., T − k + 1] is the index of the sliding window, zim is the
temporal window, f is the nonlinear activation function, αikj is the connective
weight between the i-th channel reservoir and the j-th filter with k-width, and
∗ denotes a dot-product operation.

Max-over-time pooling was used in the pooling layer to obtain the extracted
features, combined based on relevance as shown in Figure 1. In the final layer,
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outputs are defined as the conditional distribution p(Cs|u) over action labels,
where Cs denotes the s-th class of actions and p(Cs|u) is the output of the
softmax function.

3 Experiment Results

With the aim of analyzing the capability of the self-organizing reservoir, S-
ConvESN was benchmarked using two skeleton-based action recognition datasets:
MSR-Action 3D(MSRA3D) [9] and Florence3D-Action (Florence3D)
[10]. To facilitate comparison with state of the art results, training and testing
protocols were applied as follows. MSRA3D used the standard validation proto-
cols [9], three training and validation sets were created with half of the subjects
used for training and the other half for validation. For Florence3D, ten-fold
cross-validation method was used for training and validation.

Fig. 2: (a) Validation accuracy of the S-ConvESN in response to clustered cen-
troids with varying vigilance thresholds. (b) The boxplots show the accuracy
distribution for the state of the art results for MSRA3D (left) and Florence3D
(right).

Vigilance thresholds were tested for a range [0.05, 0.95]. In addition to bench-
marking for different vigilance thresholds, reservoir perturbation was also con-
sidered. Clustering was conducted for different initial noise distribution scales
η = [0, 0.1, 0.01, 0.001].

As shown in Figure 2 (a), the optimal clustering configuration was obtained
by setting the vigilance threshold to a low value. In both models, setting the
vigilance threshold to 0.05 resulted in the peak validation accuracy compared
to other vigilance thresholds. This suggests that the feature map requires high-
granularity clusters to represent a comprehensive set of unique joint coordinates.
Comparing different magnitudes of perturbation, S-ConvESN showed improved
accuracy when noise distribution was set to 0.1, while setting the magnitude to
0.01 and 0.001 produced no discernible improvement compared to the noise-less
result.

Figure 2(b) shows the distribution of the state of the art recognition accuracy
for the Florence3D and MSRA3D datasets. The bubble indicates the overall

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

594



MSR-Action 3D Florence3D-Action
Approaches Ave(%) Approaches Ave(%)
Covariance [11] 88.10 Multi-Part 82.00
Skeletons Lie group [12] 92.40 Bag-of-Poses [10]
DHMM+SL[13] 92.91 S-ConvESN(Our approach) 89.70
S-ConvESN(Our approach) 94.21
Gram matrices rep.[14] 96.90 Skeletons Lie group [12] 90.88
ConvESN [7] 97.88 ConvESN [7] 91.72

Table 1: Recognition accuracy on cross-subject test of MSR-Action 3D dataset
and on 10-fold cross validation of Florence3D-Action dataset

accuracy of S-ConvESN which stays within interquartile range. The confusion
matrices for Florence3D and MSRA3D are depicted in Figure 3.

Table 1 shows the state of the art recognition accuracy for MRS-Action 3D
dataset and Florence3D-Action dataset respectively. For the Florence3D, S-
ConvESN achieves 89.70% overall accuracy. There is some confusion between
the actions for “wave”, “drink water”, “listen to phone”, and “look at watch”,
presumably due to all of them having a characteristic arm movement towards the
head. The “check watch” action was often misclassified as “listen to phone”. For
the MSRA3D, S-ConvESN exhibits 94.21% overall accuracy, performing poorly
for “high arm wave” and “draw X” actions. The “draw X” action was often
mistaken for the “draw circle” action.

Experimental results on HAR task show that self-organizing reservoir is com-
petitive with state-of-the-art approaches. The proposed reservoir design method
is biologically feasible. By implementing the mechanism inspired by cortex neu-
ron adjustment, self-organizing and deterministic initialization of ESN reservoir
ensures topological information of the input signal is to be included into the
reservoir.

Fig. 3: The confusion matrices for Florence3D and MSR Action 3D datasets.

4 Conclusion

This paper presents a self-organizing kernel-based reservoir design for a convolu-
tional ESN. Deterministic initialization instead of randomly initialization of the
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input weight and recurrent hidden weight exhibits successful and feasible ap-
plication in generating stable reservoir and with proper scaling factor to ensure
echo state property. The recognition rates are comparable with the state of the
art, and motivate further enhancements on the robustness of the approach such
as incremental learning, or by optimizing a number of parameters in the cluster-
ing (i.e. node pruning) and reservoir (i.e. weight scaling factors). In addition,
we can explore other fusion strategies in the CNN architecture.
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