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Abstract. We draw connections between Reservoir Computing (RC)
and Ordinary Differential Equations, introducing a novel class of models
called Euler State Networks (EuSNs). The proposed approach is featured
by system dynamics that are both stable and non-dissipative, hence en-
abling an effective transmission of input signals over time. At the same
time, EuSN is featured by untrained recurrent dynamics, preserving all
the computational advantages of RC models. Through experiments on
several benchmarks for time-series classification, we empirically show that
EuSN can substantially narrow the performance gap between RC and fully
trainable recurrent neural networks.

1 Introduction

The study of neural network architectures from the perspective of dynamical
systems is recently attracting increasing research attention. The fundamental
intuition is that the computation performed by certain types of neural networks,
e.g. Residual Networks, can be interpreted as the numerical solution of an
ordinary differential equation (ODE) through discretization [1]. This observation
leads to the possibility of enforcing desirable properties into the neural network
behavior by imposing specific conditions on the corresponding ODE. Stability
plays a fundamental role in this regard, being connected to the propagation of
both input signals, during inference, and gradients, during training.

In this work, we focus on Recurrent Neural Network (RNN) architectures,
and especially on Reservoir Computing (RC) [2]. The latter defines a particu-
larly appealing approach for designing and training of RNNs, where the hidden
recurrent reservoir layer is left untrained, leaving the burden of training only to
the output layer. As such, stability of the forward signal propagation through
the reservoir is of great importance. As the parameters of the temporal transfor-
mation developed by the reservoir are left untrained, some form of constraining
is necessary to avoid instabilities when the network is put in operation with driv-
ing input. This aspect is connected to the well known fading memory property
of RC networks, which makes it difficult to preserve the input signal informa-
tion in the state dynamics across several time steps. Despite this limitation, the
RC approach has become increasingly popular due to the formidable trade-off
between predictive performance and efficiency of training algorithms. As a con-
sequence, it is the paradigm of choice, e.g., when it comes to implementations in
embedded systems [3] or in neuromorphic hardware. [4]. Still, the performance
gap with state of the art fully trainable RNNs is sometimes unsatisfactory and
leaves room for improvements.
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In this paper, we introduce a novel RC technique that draws inspiration from
numerical solutions of ODEs. The proposed architecture is achieved by forward
Euler discretization of an ODE, and as such it is named Euler State Network
(EuSN). The stability condition imposed to the ODE naturally leads to EuSN
state dynamics that are both stable and non-dissipative, hence alleviating the
lossy transmission of input signals over time. We comparatively validate our
proposal with literature models on several time-series classification tasks.

2 Euler State Networks

In the context of sequence processing, we focus on ODEs of the form:

h′ = tanh(W h+Wx x+ b), (1)

where h ∈ R
n is the state, x ∈ R

m is the input, W ∈ R
n×n is a recurrent weight

matrix, Wx ∈ R
n×m is an input weight matrix, and b ∈ R

n is the bias. Ideally,
to avoid both instability and dissipation of the state content over time, it is
desirable that the Jacobian of (1) has eigenvalues with ≈ 0 real part. A simple
way of achieving such a critical condition is to use an antisymmetric recurrent
weight matrix, i.e. of the form W = Wh −WT

h
. Relevantly, in this latter case,

the eigenvalues of the Jacobian of the transformation in (1) are all imaginary
[5], irrespective of the choice of the weight values. Hence, the critical behavior
of the involved dynamics is not required to be learned from the data, rather it
is an intrinsic property of the system.

Using the forward Euler method to numerically solve (1), and considering an
antisymmetric recurrent weight matrix, leads to the following discretization:

ht = ht−1 + ǫ tanh
(

(Wh −WT

h
− γI)ht−1 +Wxxt + b

)

, (2)

which describes the state evolution of a neural network layer with n recurrent
neurons over discrete time steps t. In (2), ǫ and γ are both small positive scalars,
representing respectively the step size of integration and a diffusion coefficient
for stabilizing the solution. We see (2) under the prism of RC, keeping the
parameters in Wh, Wx and b untrained. As the reservoir state of the system
evolves as the forward Euler solution of an ODE, we call the resulting model
Euler State Network (EuSN).

Interestingly, using standard RC arguments to analyze (2), i.e. studying
the linearized system around the null state and for null input, reveals that the
effective spectral radius of EuSN is given by the maximum among the absolute
eigenvalues of W̃ = (1 − ǫγ)I + ǫ(Wh − WT

h
). As ǫ and γ are both small

positive values, the spectral radius of W̃ is by construction confined in a small
neighborhood around 1.

Differently from RC networks, the state evolved by EuSNs is not fading
over time, i.e., the reservoir is not forgetting previous inputs during forward
propagation. Hence, stability is intrinsic and there is no scaling condition to
impose at initialization time. In other words, we see the stability condition
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imposed to the ODE by antisymmetric force fields of the Jacobian in terms of an
architectural bias for the resulting recurrent neural network. However, to balance
between previous state and current input contributions in the state computation,
we draw the weights in Wh from a uniform distribution over [−α, α], and those
in Wx and b from [−β, β], treating α and β as hyper-parameters.

As in standard RC approaches, the reservoir system described by (2) is cou-
pled by a readout layer that is the only component of the architecture to undergo
the training process.

2.1 Related Models

Within the umbrella of RC, (2) bears similarities with the state transition func-
tion of the popular Echo State Network (ESN) model [6] with leaky integrator
neurons [7]. However, differently from the case of ESNs, the previous state term
in the right hand side of 2 is not modulated by the leakage term. Moreover, the
state evolution in (2) makes explicit use of an antisymmetric recurrent weight
matrix. In the broader landscape of RNN research, a related model is the Anti-
symmetric RNN (A-RNN) [5], whose state dynamics are described by (2) as in
EuSN. Crucially, while in A-RNN all the internal weights, i.e. Wh, Wx and b,
are trainable, in EuSN they are kept fixed. Under this perspective, the study
of EuSN can be seen under the lens of randomized neural networks [8], empha-
sizing the natural abilities of stable RNN architectures based on forward Euler
discretization and antisymmetric weight matrices even in the absence (or prior
to) training of the internal connections.

3 Experiments

3.1 Datasets

We assessed EuSN on several classification tasks on time-series of diverse na-
ture, taken from the literature [9]. We considered a variety of cases, including
both uni-variate and multi-variate time-series, and both binary and multi-class
classification. Table 1 gives an overview of the adopted datasets.

3.2 Settings

All datasets were used with the original training-test split. For model selection,
we further derived a division into training and validation, with the latter con-
taining 33% of the data. The values of hyper-parameters were tuned on the
validation set using Hyperband [10]. In our experiments with EuSNs, we ex-
plored the following configurations: number of reservoir neurons n ∈ [5, 200],
recurrent and input scaling coefficients α, β ∈ [0.1, 1.5], step size and diffusion
coefficient ǫ, γ ∈ [10−5, 10−1]. As output readout classifier we used a single dense
layer trained by RMSprop, with learning rate η ∈ [10−5, 10−1], for a maximum
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Name # Seq. Max. Length # Feat. # Classes

SpokenArabicDigits 8798 93 13 10
CharacterTrajectories 2858 182 3 20
Libras 360 45 2 15
Wafer 7164 152 1 2
ECG5000 5000 140 1 5
Epilepsy 275 206 3 4

Table 1: Overview of the used datasets, including the total number of sequences
(# Seq), the maximum length of a sequence (Max. Length), the number of input
features per time-step (# Feat.), and the number of target classes (# Classes).

number of 200 epochs, using early stopping with patience of 10. After model
selection, we trained 5 models with the selected hyper-parametrization on the
whole training set, assessing the accuracy on the test set, averaging the results
(and computing standard deviations) on the 5 runs.

For comparison, we performed the same experiments with ESN, A-RNN and
GRU. In these cases we used a similar model selection and performance assess-
ment process as outlined for EuSN, exploring the same values for the number
of recurrent units and for the hyper-parameters of the training algorithm. For
ESN, we configured the reservoir exploring values of spectral radius and input
scaling in [0.1, 1.5], and leaking rate in [0.1, 1]. For EuSN and ESN the training
algorithm is restricted to the output layer, while for A-RNN and GRU it op-
erates on all the network parameters. We ran our experiments on a MacBook
Pro laptop with a 2,8 GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.

3.3 Results

The achieved results are given in Table 2. For every dataset and model, we report
the set accuracy (Acc), the number of trainable parameters of the selected hype-
perametrization (Params), indicating also the time (in minutes) required for its
training and testing (Time). Finally, we also indicate the time required for the
whole process of model selection (MS Time).

From the results, it is apparent that EuSN outperforms ESN in all the ex-
plored cases. In tasks were ESN already achieves very good accuracy (such as
Wafer and ECG5000), EuSN leads to an even improved result, with smaller stan-
dard deviations. On tasks in which ESN performs poorly, EuSN is able to reach
the same level of accuracy of the fully trainable models A-RNN and GRU, or in
any case to significantly bridge the performance gap. Intriguingly, the boost in
classification accuracy is not paid in terms of computational resources. In fact,
in terms of time, EuSN is as efficient as ESN. Leveraging the untrained dynamics
results in a dramatic advantage compared to A-RNN and GRU, as confirmed by
the results in Table 2.
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SpokenArabicDigits

Acc Params Time (min.) MS Time
EuSN (ours) 0.956 (±0.005) 1850 0.270 (±0.075) 00h 17m 50s
ESN 0.878 (±0.013) 1020 0.108 (±0.018) 00h 17m 27s
A-RNN 0.979 (±0.004) 43547 4.799 (±0.337) 06h 46m 52s
GRU 0.978 (±0.004) 116382 5.010 (±0.645) 05h 39m 53s

CharacterTrajectories

Acc Params Time (min.) MS Time
EuSN (ours) 0.979 (±0.002) 2640 0.145 (±0.005) 00h 09m 28s
ESN 0.904 (±0.013) 2040 0.062 (±0.006) 00h 08m 55s
A-RNN 0.979 (±0.003) 7445 1.472 (±0.257) 01h 31m 16s
GRU 0.966 (±0.006) 99108 2.058 (±0.379) 02h 17m 00s

Libras

Acc Params Time (min.) MS Time
EuSN (ours) 0.620 (±0.008) 2130 0.145 (±0.005) 00h 06m 24s
ESN 0.269 (±0.019) 2655 0.037 (±0.001) 00h 06m 41s
A-RNN 0.619 (±0.009) 4159 0.254 (±0.016) 00h 10m 39s
GRU 0.772 (±0.046) 19881 0.152 (±0.010) 00h 15m 21s

Wafer

Acc Params Time (min.) MS Time
EuSN (ours) 0.990 (±0.002) 189 0.223 (±0.035) 00h 08m 41s
ESN 0.983 (±0.008) 197 0.089 (±0.009) 00h 08m 11s
A-RNN 0.993 (±0.001) 17029 2.645 (±0.190) 01h 21m 56s
GRU 0.987 (±0.005) 19033 1.321 (±0.152) 02h 04m 53s

ECG5000

Acc Params Time (min.) MS Time
EuSN (ours) 0.935 (±0.000) 945 0.118 (±0.014) 00h 07m 29s
ESN 0.913 (±0.011) 565 0.064 (±0.011) 00h 06m 57s
A-RNN 0.933 (±0.002) 545 0.448 (±0.069) 00h 50m 17s
GRU 0.926 (±0.007) 57397 0.619 (±0.148) 01h 35m 49s

Epilepsy

Acc Params Time (min.) MS Time
EuSN (ours) 0.868 (±0.010) 468 0.076 (±0.003) 00h 07m 10s
ESN 0.709 (±0.033) 708 0.060 (±0.009) 00h 06m 37s
A-RNN 0.872 (±0.020) 2389 0.684 (±0.095) 00h 30m 31s
GRU 0.872 (±0.047) 576 0.174 (±0.022) 00h 31m 15s

Table 2: Results on time-series classification problems achieved by EuSN, com-
pared to ESN, A-RNN and GRU. For every dataset we report the accuracy on
the test set (Acc), the number of trainable parameters (Params), the time for
training and test (Time), and for the whole model selection (MS Time).
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4 Conclusions

In this paper, we have introduced a novel class of Reservoir Computing (RC)
neural networks, called Euler State Networks (EuSNs), inspired by the numerical
solution of Ordinary Differential Equations (ODE). The proposed approach is
based on forward Euler discretization, and makes use of antisymmetric recurrent
weight matrix to bias the eigenspectrum of the resulting Jacobian near zero
real parts. As a result, the employed reservoir dynamics are neither lossy nor
unstable, and can effectively preserve information across time steps.

The proposed EuSN approach combines the ability to model long-term prop-
agation of input signals with the typical efficiency of RC. Experiments on several
classification problems show that EuSN consistently outperforms ESN in terms
of accuracy while keeping similar execution times. At the same time, EuSN can
substantially reduce the accuracy gap of RC with respect to state of the art fully
trainable RNNs, while offering an evident computational advantage.

The study presented in this paper is empirical and, though preliminary, very
promising, putting forward EuSNs as an effective alternative to ESNs for classifi-
cation problems. Future works will go more in-depth in analyzing ODE-inspired
RC architectures and their theoretical properties.
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