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Abstract. Deep learning struggles to generalize well to an unseen target
domain of interest. Current domain adaptation methods simultaneously
learn a classifier and an adversarial game for invariant representations but
inadequately align local structures, while the underlying process is hard
to interpret. We propose a new interpretable adversarial domain architec-
ture, matching local manifold approximations across domains. Evaluated
against related networks, the approach is competitive, while the adapta-
tion process can be visually verified.

1 Introduction

Deep Domain Adaptation (DDA) is a technique to learn a network capable of
adapting from a training or source domain to an evaluation or target domain, as-
suming the domain data distributions are related but inevitably different. Joint
Adversarial Domain Adaptation (JADA) [1] is the current state of the art in
DDA and learns the following multi-task schema: a classifier, a domain discrim-
inator, and a local adaptation divergence on top of a feature extractor network.
The classifier is learned on labeled source data and should generalize well to the
target domain. The discriminator learns to separate both domains while the
feature extractor tries to fool it, playing a min-max game and learning global
domain invariance [2]. Finally, local adaptation [3] is used to jointly align struc-
tures such as classes or clusters where pseudo labels [4] are frequently used.

However, network predictions [4] are unreliable, in a DDA setting, due to
possible distribution shifts during adaptation [5]. Using trivial models such as
moving average to approximate and align local data [3] neglects multi-modal
domain structures [6] and are inappropriate. Additionally, these approaches use
neural networks without an interpretable domain invariant class representation.

The Generalized Tangent Learning Vector Quantization (GTLVQ) [7] models
the classification boundary implicitly by approximating the local data manifold
structure via affine subspaces (tangent space approximations). Employing the
GTLVQ as domain tangent discriminator is favorable to address the above issues
because (i) provides a locally invariant and reliable model in the adaptation
process by subspace and online learning, (ii) can capture multi-modal manifold
structures, and (iii) provides an interpretable model by visualizing points from
the affine subspace to verify the adaptation process.

Contributions: we introduce the GTLVQ as a domain discriminator and
derive the Domain Adversarial Tangent Network (DATN) to match local domain
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manifolds during domain adaptation (Sec. 3). We validate our DATN against
related networks and show state-of-the-art performance (Sec. 4). Further, we
interpret and visualize the adaptation processes by Siamese subspace samplings,
which to our best knowledge, is the first approach to interpret DDA networks
(Sec. 4).

2 Background and Related Work

In unsupervised deep domain adaptation [2, 6], we consider a labeled source
dataset Ds = {Xs,Ys} = {xsi , ysi }ni=1

i.i.d.∼ p(S) in the source domain S and an
unlabeled target dataset Dt = {Xt} = {xtj}mj=1

i.i.d.∼ p(T ) in the target domain
T with same label space ∀i, j : yi, yj ∈ Y but different distributions p(S) 6= p(T ).
The overall goal is (still) to learn a classifier model, but additionally, it should
generalize to a related target domain. The input feature space X is the initial
representation of the source and target, i. e., Xs,Xt ∈ X .
Adversarial Domain Adaptation (ADA): Initially, we consider a vanilla
ADA network [2]: f : X → F with parameters θf as feature extractor, g : F → Y
with parameters θg as classifier and d : F → D = {−1, 1} as a domain classifier
with parameters θd, predicting the domain of a sample. The network learns by

argmin
θf ,θg,θd

E [Ly (g (f (Xs; θf ) ; θg) ,Ys)]+E[Ld (d (R (f (X; θf ) , λ) ; θd) ,Yd)], (1)

where Yd = [1n,−1m] ∈ D are the domain labels and X = [Xs,Xt] is the
combined source and target data. Ly is the cross entropy classification loss
given source data and Ld is the binary cross entropy considering all available
data. The Gradient Reversal Layer (GRL) [2] is R(x;λ) = x with ∂R

∂x = −λI and
by multiplying the gradients of d(·) with −λI leads to the min-max game, and the
invariant representation. Trade-off is controlled by hyperparameter λ ∈ [0, 1].
Joint Adversarial Domain Adaptation (JADA): The JADA networks ex-
tend Eq. (1) to capture the class structure of both domains within adversarial
learning. The Conditional Domain Adaptation Network (CDAN) [6] utilizes a
multi-linear map g(X)⊗d(X) to model uncertainty and class affiliation into Ld.
The Joint Adversarial Adaptation Network [1] introduces two non-equal classi-
fiers g1(Xt), g2(Xt) predicting target labels. The network is learned to maximize
the difference between both predictions using L1-norm, and by GRL, the fea-
ture extractor learns a classifier-level independent representation. The concept
of JADA was recently generalized by introducing k classifiers, explicitly mini-
mizing the classifier predictions via GRL [8]. Adversarial learning takes place
separately. Finally, the Adversarial Semantic Consistency Network (ASC) [3]
tries to approximate local structures by a class-wise mini-batch moving average.
Target class means are found using pseudo labels. Source and target means are
aligned together with the above adversarial learning.
Delimitation: The above methods share the following issues addressed by
DATN: (i) they utilize classifier predictions in the adaptation process leading
to degenerated features if pseudo labels are false [9]. DATN learns local domain
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structures over multiple batches via domain loss. (ii) moving averages used by
ASC are heavily biased towards the mini-batches and cannot capture multi-
modality by a single mean. We do not restrict our model to a single subspace
per domain and can capture multi-modal domain structures [6] given by the
classes. (iii) all mentioned discriminators are uninterpretable with no guarantee
or tool to verify working adaptation mechanics. Note that plotting a classi-
fication boundary is unreliable due to the possibility of mode collapse of the
discriminator. We apply Siamese networks [10] to visualizes the discriminator
model to see the invariant and relevant aspects of class data from both domains.

3 Model

Current JADA approaches use neural networks to align both domains via ad-
versarial learning, but the prior discussion motivates various opportunities for
GTLVQ. We will briefly summarize GTLVQ, reformulate it as a discriminator,
and assemble the Domain Adversarial Tangent Network (DATN) as JADA net-
work.
GTLVQ: Originated from prototype-learning GTLVQ [7] consists of q affine
subspaces W = {vk +Bkθ|θ ∈ Rl,Bk ∈ Rf×l}qk=1, where Bk is an orthonormal
basis of the l-dimensional linear subspace of bottleneck space F ∈ Rf , vk is a
translation vector and θ is a parameter vector. The relation of x ∈ Rf to wk ∈W
is computed by the tangent distance d(x, wk) = minθ de(x,vk +Bkθ), where de
is the euclidean distance. Assuming BkB

T
k = If , the optimal parameter vector

for minimizing d(x, wk) yields θ∗ = BT
k (x − vk) so that the Tangent Distance

can be simplified to

d(x, wk) =
√

(x− vk)TPk(x− vk), (2)

where Pk = If − BkB
T
k ∈ Rf×f . Note that wk with label yk is called set-

prototype. Let d+(xi,W ) = min d(xi, wk) ∀wk : yk = yi be the closest set-
prototype with same label as xi and d−(xi,W ) = min d(xi, wk) ∀wk : yk 6= yi
the closest set-prototype with different label. The GTLVQ is learned to have
close same label set-prototypes, while different label ones are further away w.r.t
xi. The method learns via projected stochastic gradient descent, consisting of
vanilla SGD of wk parameters and orthonormalization of Bk after every update.
DATN: We employ GTLVQ as Tangent Discriminator (TD) via d(·,W ) in
Eq. (1) to separate both domains with their respective manifold structure as
two-class task. To have consistent loss functions over all models and to learn
all set-prototypes simultaneously, we learn TD with the following cross entropy
function

Ld(x, yd;W ) = −
q∑

k=1

(yk = yd) log

(
exp(−d(x, wk))∑q
a=1 exp(−dj(x, wa))

)
(3)

where yd ∈ D is the domain label of x, d(x, wk) is the tangent distance, and
yk is the label of k-th set-prototype. Minimizing Eq. (3) will lower the distance
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to closest correct and increase it to incorrect set-prototypes. Hence, the model
captures the multi-modality by learning to separate both domains via multiple
set-prototypes. It is not biased by the current batch because every prototype is
adapted by minimizing Eq. (3), without needing source or target pseudo labels.
During learning, the TD gradients are reverse propagated by GRL to the feature
extractor, resulting in merging both domain manifolds to fool the discriminator.
By plugging Eq. (3) into Eq. (1) all models are trained simultaneously. The
gradients of Ld w.r.t W are omitted due to space issues.
Local Adaptation Interpretability: We use the Siamese [10] concept. A
translation vk ∈ wk is obtained by forwarding domain data from original space
vxk ∈ X to the bottleneck space via vk = f(vxk) ∈ F . We call vxk Siamese Trans-
lation (ST) and by setting θ = 0, such an vk ∈ wk is a representative subspace
sample. Recap that to classify both domains, multiple prototypes represent ei-
ther source or target domain. We identify pairs of closest source and target
translations in F for interpretation. Their Siamese counterparts are, for exam-
ple, images or text in the input space X . Hence, we can identify domain invariant
features using activation heatmaps of adapted source and target representatives
and interpret local adaptation success for the first time in DDA.

4 Experiments

The DATN approach is evaluated against related competitive approaches1. The
results are shown in Tab. 1. In the following, we describe the experimental
details:
Setup. The study follows the standard protocol for evaluating unsupervised
deep domain adaptation [6] and utilizes all available labeled source data for
learning and all unlabeled target data for knowledge transfer and evaluation.
The performance is summarized as mean with standard deviation over three
random runs. Related competitive methods are listed in the results table.
Dataset. The Office-31 dataset contains images from three separated domains,
namely Amazon (A), Webcam (W), and DSLR camera (D) [6, 11]. Each do-
main has 31 classes with objects frequently located in the office. Since all three
domains are acquired with different settings and photo cameras, the adaptation
problem is to train on one domain and test on another. For example, a dataset
combination is A→D (Amazon to DSLR).
Implementation Details. The DATN hyper-parameter, namely the subspace
dimension, is optimized via grid-search and set to l = 128 for all dataset combi-
nations. Feature extractor and classifier parameters are trained via SGD with a
momentum of 0.9, while the Tangent Discriminator (TD) is learned via ADAM.
The target STs are found by clustering with 31 centroids in F and randomly
select an image from each cluster. The subspaces are the right singular vec-
tors of an epoch of source and target data, respectively. The STs as original
images with their subspaces are the initial TD model. We use progress based

1Code and data are published at github.com/ChristophRaab/DATL
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Dataset A→W D→W W→D A→D D→A W→A Avg.
Resnet [12] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DANN (2015) [2] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
CDAN (2018) [6] 93.1±0.2 98.2±0.2 100±0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
CAT (2019) [13] 94.4±0.1 98.0±0.2 100±0 90.8±1.8 72.2±0.6 70.2±0.1 87.6
CLDA (2020) [4] 78.5±0.3 99.3±0.2 99.8 ± 0.1 79.1±0.1 64.7±0.3 65.8±0.2 81.2
SCA (2020) [11] 93.6±0.1 98±0.2 100±0 89.5±0.1 72.6±0.2 72.4±0.3 87.7
DATN (ours) 94.6±0.2 98.4±0.2 100±0 90.3±0.7 71.4±0.2 71.6±2.3 87.7

Table 1: Mean prediction accuracy with standard deviation on the Office-31.

Fig. 1: Source bike translation (Left) with closest target translation (right) with
score cam heatmap.

parameter scheduling for λ (GRL, see Sec. 2) as suggested for adversarial domain
architectures [2, 6]. The batch size is 36, and the bottleneck dimension is 256.
Results. We compare our DATN against competitive domain adaptation net-
works (Tab 1). The baselines are Resnet [12] and DANN [2]. The results show the
competitive performance of DATN against SCA [11] and CAT [13] with insignif-
icant performance differences. DATN outperforms the remaining approaches.
The results support the claim that GTLVQ as Tangent Discriminator is a rea-
sonable substitute for neural network-based discriminators with similar perfor-
mance compared to recent networks. However, in contrast to compared results,
we can verify local adaptation by interpreting the GTLVQ model.
Interpretability. The Siamese source translation for a bike with their nearest
target counterpart with the score class activation mapping are plotted in Fig. 1.
The match is found by the pairwise euclidean distance of the source and target
translations in F . Because the target translations are found randomly given tar-
get clusters, as described above, the network can find the correct corresponding
translation and match both local manifold approximations together. It is ob-
servable that the focus of DATN given the STs is on the switching gear and some
parts of the wheel, invariant to rotations and the respective domain. Hence, we
can identify the invariant regions and interpret the adaptation process.

5 Conclusion

We studied the effect of GTLVQ as a domain tangent discriminator in a JADA
network. The proposed Deep Adversarial Tangent Network (DATN) learns all
set-prototypes simultaneously to approximate local domain manifolds. The as-
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sembled DATN is competitive to the state of the art unsupervised domain adap-
tation networks. In contrast to related work, the discriminator is interpretable
to verify local adaptation success, making the approach favorable for applica-
tion. Future work should target extensive derivation of the gradients of DATN
and the local interpretability aspect, as well as more benchmark experiments.
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