
Decay Momentum for Improving Federated
Learning

Miguel Fernandes, Catarina Silva, Joel P. Arrais,
Alberto Cardoso and Bernardete Ribeiro

University of Coimbra - Department of Informatics Engineering
Polo II Pinhal de Marrocos, Coimbra - Portugal

Abstract. We propose two novel Federated Learning (FL) algorithms
based on decaying momentum (Demon): Federated Demon (FedDemon)
and Federated Demon Adam (FedDemonAdam). In particular, we apply
Demon to Momentum Stochastic Gradient Descent (SGD) and Adam in
a Federated setting, which has shown to improve results in a centralized
environment. We empirically show that FedDemon and FedDemonAdam
have a faster convergence rate and performance improvements compared
to state-of-the-art algorithms including FedAvg, FedAvgM and FedAdam.

1 Introduction

In recent years, data-intensive machine learning methods that can extract hidden
information from data are becoming a powerful tool in several domains. How-
ever, latency and privacy problems arise when data needs to be transferred from
multiple edge devices to centralized locations. As edge devices are becoming
computationally more powerful, Federated Learning [1] was proposed with the
objective of solving these issues by using edge devices to train machine learning
models.

In FL, a Federated Server distributes the computing tasks to the clients where
the private data is generated. Once at the client the shared model is updated
to fit the available data. Afterwards, each updated model is sent back to the
server, keeping clients’ data private.

In the current paradigm, Federated Learning’s deep neural networks require
long periods of time to train. For example, studies have shown that recurrent
neural networks can take up to five days to train in a Federated setting [2]. As
a consequence, the communication costs of data transferring between servers
and clients can be problematic, even in a Federated setting. Hence, advances in
methods that can accelerate Federated model training are of utmost importance.

Federated Averaging (FedAvg) [1], the most commonly used FL algorithm,
is based on a weighted average of client models sent to the server, giving higher
importance to models trained with more data points. In addition, FL algorithms
inspired by the Momentum (FedAvgM) and Adam (FedAdam) [2, 3] optimizers
have also been explored and proven to have a better convergence rate than vanilla
FedAvg.

In this work we apply the momentum decay rule (Demon) [4, 5] to FL. The
Demon rule has the objective of decaying the total contribution of a gradient

17

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

to all future updates and was demonstrated to surpass the performance of both
Adam and Momentum SGD optimizers.

We present a comparison between the proposed algorithms and current FL
methodologies. The experiments are performed over two benchmark datasets
[6, 7] which are used in FL studies. We make the following contributions:

• Proposal and implementation of Federated Demon (FedDemon)

• Proposal and implementation of Federated Demon Adam (FedDemon-
Adam)

• Comparison between the proposed approaches with current state-of-the-art
FL algorithms including FedAvg [1], FedAvgM [3] and FedAdam [3]

We empirically demonstrate that the proposed algorithms present lower error
values and converge faster compared to their family of algorithms.

2 Federated Decaying momentum

In this section, we present the proposed FL algorithms: FedDemon and FedDe-
monAdam. This adaptation of the Demon algorithm to the Federated setting is
motivated by the improved performance of Demon in comparison to Momentum
SGD and Adam in a centralized environment. The objective is to use momentum
to speed up the early phases of training and then decay it throughout training
in order to prevent weights from growing too quickly. In the Demon algorithm
the momentum parameter β is given by:

βt = β0
(1− t

T)

(1− β0) + β0(1− t
T)

(1)

where βt is the momentum parameter at iteration t, β0 is the initial momen-
tum parameter and T is the total number of iterations.

In both algorithms, at the t communication round the server is connected
to a random subset of clients St, St < K and the current global model, θt, is
broadcasted to each. Then the clients in St update the model using SGD locally
for E epochs to optimize the local objective. Afterwards, the client model, θkt , is
sent to the server where the new model, θt+1, is generated. The local optimizer
can be any gradient-based method. Algorithm 1 presents the clients’ model
update.

18

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Algorithm 1 clientk update

Receive θt from server
Initialize ηl, B,E
for each local epoch i from 1 to E do

for batch b in B do
θkt+1,i+1 = θkt,i - ηl∇fk(θkt,i, b)

end

end

θkt+1 = θkt+1,i+1

return θkt+1 to the server

2.1 FedDemon

The FedDemon algorithm results from the use of the momentum value in the
server model update with the decay rule of the Demon algorithm. Algorithm 2
presents the pseudo code for FedDemon.

Algorithm 2 FedDemon

Initialize θt, β0, T
for each round t = 1, 2, ..., T do

Select St = random subset of clients (St < K)
for each client k ∈ St do

θkt+1 = Algorithm 1 (θt)
end

α =
∑St

k=1
nk

n (θkt+1 − θt)
βt = β0

(1− t
T)

(1−β0)+β0(1− t
T)

vt+1 = βtvt + α
θt+1 = θt + vt+1

end

Firstly, the FedDemon algorithm receives the updated clients models and
calculates a weighted average of the local updates, α, giving higher importance
to updates trained with more data points, where n is the total number of data
points at the current St. Secondly, it calculates the current βt value using
Equation 1. Thirdly, it calculates the new momentum value, vt+1, by summing
a fraction (given by βt) of the previous update and the averaged local updates.
Afterwards, the global model is updated by summing the previous model with
the Momentum update.

2.2 FedDemonAdam

The FedDemonAdam algorithm results from the use of the Adam optimizer in
the server model update with the decay rule of the Demon algorithm. Algorithm
3 presents the pseudo code for FedDemonAdam.

19

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Algorithm 3 FedDemonAdam

Initialize θt, β0, β2, η, T
for each round t = 1, 2, ..., T do

Select St = random subset of clients (St < K)
for each client k ∈ St do

θkt+1 = Algorithm 1 (θt)
end

α =
∑K
k=1

nk

n (θkt+1 − θt)
βt = β0

(1− t
T)

(1−β0)+β0(1− t
T)

mt+1 = βtmt + α
vt+1 = β2vt + (1− β2)α2

v̂t+1 = vt+1/(1− βt2)
θt+1 = θt + η(mt+1√

v̂t+1+ε
)

end

Firstly, FedDemonAdam receives the updated client models and similarly to
FedDemon it calculates α and βt. Secondly, the moving average of the squared
α, vt, and the moving average of α, mt, using βt are calculated. Lastly, the
model is updated by summing the previous model with the scaled learning rate.

3 Experimentation

In this section, we empirically compare the performance of the two proposed
algorithms (FedDemon and FedDemonAdam) to their state-of-the-art counter-
parts (FedAvgM, FedAdam) by training deep neural networks in a Federated
setting. The simulation used is based on the LEAF project [8] which is a FL
benchmark.

Table 1 shows the statistics of the FEMNIST [6] and CELEBA [7] datasets
for image classification tasks. FEMNIST is built by partitioning the data on the
Extend MNIST. CELEBA is a large-scale face attributes’ dataset with celebrity
images.

Dataset Number of Clients Samples per Client
Mean Standard Deviation

FEMNIST 3500 226.26 89.12
CELEBA 9343 21.44 7.63

Table 1: Statistics of the datasets used in the experimentation.

The model’s architecture used in the FEMNIST has an input layer of 28×28,
followed by a convolutional layer which produces 32 features maps with a kernel
of 5×5. This is then followed by a Max-pooling layer with a max-pool of 2×2
and a stride of 2. Afterwards, a second convolutional layer produces 64 feature
maps with a kernel of 5×5 and a Max-pooling, similar to the previous. Finally,

20

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

the model has a fully connected layer with 2028 neurons followed by a softmax
output layer. All the layers use ReLU as the activation function. The loss
function used was the cross-entropy and the optimizing method was SGD.

The model’s architecture used in the CELEBA dataset has an input layer
of 84×84, followed by a convolutional layer with 32 filters and a kernel size of
3×3. This is then followed by a Max-pooling layer with a max-pool of 2×2 and
a stride of 2. This sequence of layers is repeated three times. Finally, the model
has a softmax output layer. All the layers use ReLU as the activation function.
The loss function used was the cross-entropy and the optimizing method was
SGD.

The number of client models used at each communication round was set to
5 and the local mini-batch size to 10.

For the FEMNIST dataset ηl was set to 0.001, β0 was set to 0.9 in FedDemon
and FedDemonAdam and β2 and η were set to 0.999 and 0.01 in FedDemon-
Adam, respectively. For the CELEBA dataset ηl was set to 0.0001 in FedDemon
and FedDemonAdam, β0 was set to 0.9 and β2 and η were set to 0.999 and 0.001
in FedDemonAdam, respectively.

Figures 1 and 2 present the performance comparison between FedAvg, Fe-
dAvgM, FedDemon, FedAdam and FedDemonAdam for the FEMNIST and
CELEBA datasets. Looking at the results, it can be observed that FedDemon-
Adam was the best performing algorithm for both datasets since it was faster
to converge and presented a smaller error value. FedAvg algorithm was outper-
formed by all the others. FedDemon converged at a similar rate to FedAvgM
but was able to achieve a better testing accuracy and a lower training loss for
the FEMNIST dataset. Table 2 presents the algorithms’ performance.

Fig. 1: Performance comparison between FedAvg, FedAvgM, FedDemon,
FedAdam and FedDemonAdam for the FEMNIST dataset.

4 Conclusion

In this work, we proposed two novel Federated Learning algorithms: Federated
Demon (FedDemon), Federated Demon Adam (FedDemonAdam). FedDemon
utilizes Momentum to update the server model with a momentum decay rule.

21

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Fig. 2: Performance comparison between FedAvg, FedAvgM, FedDemon,
FedAdam and FedDemonAdam for the CELEBA dataset.

Dataset FedAvg FedAvgM FedDemon FedAdam FedDemonAdam

FEMNIST 79.3 77.6 83.9 83.1 84.9
CELEBA 84.2 89.4 88.7 90.6 91.9

Table 2: Test set accuracy for the FEMNIST and CELEBA after training.

FedDemonAdam is a Federated Learning reformulation of the Adam optimizer
with a momentum decay rule for the moving average of the model update.

We compare the proposed models in a Federated Learning simulation on
two benchmark datasets and the results show that the proposed algorithms had
faster convergence rates and performance improvements compared to the state-
of-the-art.

References

[1] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated
learning of deep networks using model averaging. CoRR, abs/1602.05629, 2016.

[2] Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin, and Heng Huang. Faster on-device
training using new federated momentum algorithm. CoRR, abs/2002.02090, 2020.

[3] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konecný, Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization.
CoRR, abs/2003.00295, 2020.

[4] John Chen and Anastasios Kyrillidis. Demon: Momentum decay for improved neural
network training. CoRR, abs/1910.04952, 2019.

[5] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
Networks, 12(1):145–151, 1999.

[6] Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86:2278 – 2324, 1998.

[7] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.

[8] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia
Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings. CoRR,
abs/1812.01097, 2018.

22

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

