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Abstract. This paper proposes a weightless architecture for graph clas-
sification scenarios. This architecture is a three-headed arrangement com-
posed of graph hand-picked features, a quantization method and a final
classifier. Although multiple new strategies for graph classification have
been proposed in recent years, it is still necessary to settle comparable
studies with respect to weightless neural networks. The proposed archi-
tecture is evaluated along with other baseline classifiers and independent
strategies, showing that weightless architectures are able to compete with
other well-established methods such as graph kernels.

1 Introduction

In recent years, our community has witnessed a growing interest in graph-based
machine learning. Ranging from the somewhat recent graph neural networks [1]
to classical kernel methods [2], graph learning is a difficult and valuable field
that has intrinsic problems due to graphs’ non-euclidean nature. If it is trivial
to represent a graph as an adjacency matrix, any graph learning process has
to come up with a graph representation that must deal with node and edge
labeling invariance. This learning, especially if deep, can be costly and require
amounts of time and data. Hence, simpler, faster and cheaper models are still
sought-after.

Our work is focused on a fundamental branch in graph learning, the classifica-
tion of entire graphs with a corresponding label. This problem has applications
that have been arisen from different fields of study and industry, such as social
networks, chemistry and biology [3]. Going in the opposite direction of the re-
cent trend, we rely on the simplest and traditional approach of a bag of nodes
(as defined in [4]), driven by graph statistics that are used in the form of entire
distributions, later binarized, as input to the WiSARD[5] classifier.

Although WiSARD-based classifiers have demonstrated good results in other
domains [6], our work pioneers in joining both graph learning and weightless
classifiers. We evaluate our new architecture first in respect to its sanity, in a
controlled and synthetic network science scenario and then in widely used public
datasets [3], demonstrating its feasibility towards the desired task.

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001, CNPq, FAPERJ and DIPPG - CE-
FET/RJ.
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2 Background

2.1 On network centralities and graph measures

Many features and measures were developed throughout these years to analyze
graphs and networks1. Yet, here we pinpoint three simple effective measures
leveraged by our work.

Degree – according to [4], the node degree is the most elementary of the
graph measures. A graph G is denoted by G = (V,E) , where V is the set of
vertices and E the set of edges, being an edge ei,j a pair = (vi, vk) | vi, vk ∈ V .
The degree d(i) of a node vi is defined as the number of nodes connected to a
certain node vi ∈ V . In other words, it is |N(i)| where

N(i) = {vk ∈ V | ei,k ∈ E, i 6= k} (1)

A graph can be directed or undirected. If a graph is directed, ei,j is distin-
guishable from ej,i, thus previous definition turns out to be the node’s out-degree
dout(i) of vi, being a node’s in-degree din(i) analogously defined as |Nin(i)| where

Nin(i) = {vk ∈ V | ek,i ∈ E, i 6= k} (2)

PageRank centrality – a node’s centrality describes how important is a
node in a given network, another basic concept in network analysis [7]. The
PageRank centrality [8] pr(i) of a node vi, of the most used node centralities, is
recursively defined next, where α is the damping factor, a constant ∈ (0, 1):

pr(i) = α
∑

k∈Nin(i)

1

dout(k)
pr(k) + (1− α) (3)

.
The Onion-Decomposition/Spectrum – the onion decomposition [9] is

a modification of the k-core decomposition, a method to define a core-periphery
structure in networks, that provides comprehension of a graph in multiple scales.
A k-core is a subgraph of G such that every vertex has degree at least k. The
onion decomposition algorithm [9] gathers an extra information during the k-
core decomposition algorithm called layer. A layer is the number of iterations
until a given node is reached by the algorithm. Although straightforward, this
little extra information leads to another interesting feature named the onion
spectrum, which is simply the fraction of all nodes found in a given layer.

2.2 On WiSARD-based classifiers

The WiSARD [5] is a hardware-intended n-tuple classifier, being extremely
lightweight. Its a pseudo-random memory-oriented model, which fits the defini-
tion of a weightless neural network, originally designed for supervised learning.
Recently it got an extension for semi-supervised and unsupervised learning un-
der the name of ClusWiSARD [10]. Basic functionality refers to the division a

1Here we use both terms as synonyms.
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binary input vector into n tuples, each with q bits that maps a RAM address.
These addresses are further written to learn patterns and read to distinguish
between learned examples for classification.

2.3 On quantization strategies

Binarization and quantization stategies deserve a chapter when dealing with
WiSARD classifiers, because of its dependency on binary vector inputs. A num-
ber of works have been published and here we highlight some of the strategies
evaluated in our work.

Plot Binarization – the initial strategy used in [11], consists of plotting
R2 points in a canvas and using the plot image as a binary input vector.

Histogram Binarization – a thermometer encoding of the distribution
histogram, where each histogram bin is a thermometer encoding of its min-max
normalized value. This encoding scheme was previously used with good results
in [6, 12] for example.

KernelCanvas [12] Binarization – an Rn division strategy that splits
the space in k regions, being k defined as the number of kernels. Kernels are
random points that when in R2 produce a space partition similar to a Voronoi
diagram.

KD-Tree Binarization – an R2 division framework that splits the space
in k regions using a KDTree, being k the number of leaves in the tree. Nodes
get divided according to pre-defined priority policy. More details can be found
in [11].

3 Problem and Model

We formulate our graph classification problem as learning a function f ∼ l(G),
where l : G → Σ, being G a graph and Σ a label set in a given dataset. Our
architecture breaks f into a three function composition: f = C ◦ Q ◦M . M
is the feature/measure extraction step that, given a graph, returns an array of
R2 extracted feature points. Q is the binarization/quantization step, that given
a list of arbitrary points in R2, outputs a fixed-size binary vector. C is the
classifier step that given a fixed-size binary vector, outputs a label as result.

The mental picture of step M is a plot of measures describing G. For all
measures but the onion decomposition, the whole distribution was used under
the form of an empirical complementary cumulative distribution function. The
onion spectrum was used for the onion decomposition. In our work, albeit some
datasets and graphs might present node and edge attributes, we restrict our
study to using the graph structure as input.

4 Experiments and Results

Several datasets were used in this work, including a synthetic dataset we built
named RGG, inspired by [13]. This dataset was created using graphs generated
by five random graph generators available in the NetworkX[14] Python library:
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Erdos-Renyi (GNP), Random power law tree, Connected Watts-Strogatz small-
world, Holme-Kim and Barabási-Albert. Each generator serves as the class label
for the dataset. The other datasets were drawn from the TUDatasets collection
[3], using their cleaned versions as distributed in the PyTorch Geometric library
[15]. A summary of the datasets is presented in Table 1.

dataset # graphs # classes avg. |N | avg. |E|
RGG 20480 5 139.68 813.43

MUTAG 135 2 18.85 20.83
ENZYMES 595 6 32.48 62.16
IMDB-M 321 3 22.35 124.72
COLLAB 4064 3 76.94 2333.64

NCI1 3785 2 29.87 32.37

Table 1: Dataset summary.

The performance of every combination for the C, Q and M functions listed on
Table 2 was assessed, resulting in a total of 48 models (including both WiSARD-
based classifiers and RandomForest baselines). Additionally, we evaluated the
performance of a complete independent baseline, using the WL-Graph Kernel
[16] as implemented in [17] and an SVM classifier (WL-SVM). Every combination
was tested as an hypothesis in a ten-fold cross validation procedure on a Xeon
E5-2630 v3 CPU with 32GB RAM.

Measures (M) Quantization(Q) Classifiers (C)
node degree (IN/OUT) Plot (PB) WiSARD (WIS)

page rank centrality (PR) Histogram (HG) ClusWiSARD (CWIS)
onion decomposition (OD) KernelCanvas (KC) RandomForest (RF)

KDTree (KDT)

Table 2: All hypothesis sets for measure extraction (M), quantization (Q) and
classifier (C) steps.

The parameter selection methodology was exactly the same as in [18]. Grid
search is used for best validation parameters and then a test phase. We also put
a size constraint on our binary vectors to 2048 bits, except for the RGG dataset
test where only 1024 bits were used.

As depicted by Figure 1, the results of a F1-score of 0.99 on the RGG dataset
assess the feasibility of our framework, reaching a comparable performance to the
SVM baseline approach.On some datasets, such as MUTAG, it outperforms the
baseline model, reaching a top 0.83 F1-score. Concerning all tested hypotheses
excluding the kernel baseline, there is no clear winner. With respect to measures,
both page rank and onion decomposition ranked better in a tie scenario. As for
quantization strategies, there was a slight dominance of the KDTree and Plot
approaches, yet other strategies were also successful in some experiments. In
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general, WiSARD classifiers had a comparable performance to RandomForest
alternatives.
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Fig. 1: Results summary: top 10 combinations for each dataset. Proposed
framework performance is comparable to kernel baseline in every scenario.

5 Conclusion

In this paper we have presented a novel architecture for graph classification using
weightless neural networks. Although based on naive bag of nodes features, ex-
perimental results point that it has comparable performance with other shallow
learning and yet more complex alternatives, such as graph kernels. Future work
aims towards the incorporation of node and edges attributes to the framework
and also the inclusion of other graph representation techniques as part of the
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learning process.
.
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