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Abstract. Access to medical data is often restricted due to privacy laws
e.g. HIPAA and GDPR. We address the viability of substituting real data
with synthetic data to protect privacy while maintaining utility. Medi-
cal data records are fundamentally longitudinal, with one patient having
multiple health events influenced by covariates like gender, age etc. Syn-
thesis of medical data, hence, falls under time-series generative modeling.
We demonstrate methods to measure synthetic medical time-series quality
on datasets from previously published synthetic data research. We de-
ploy four time-series metrics to quantify resemblance in synthetic and real
covariate plots while comparing baseline data generation methods.

1 Introduction

Dissemination of medical records is essential to facilitate new research and make
effective decisions. For instance, Electronic Medical Records (EMRs) can en-
hance patient care, facilitate identification of eligible patients, reduce costs and
improve efficiency in clinical research [1]. However, access to medical data is
often restricted by privacy laws such as Health Insurance Portability and Ac-
countability Act (HIPAA) and General Data Protection Regulation (GDPR)[2].

Synthetic medical data is an elegant solution that can enable dissemination of
high utility data that resembles real data while preserving patient privacy. Med-
ical records are often longitudinal, with each patient having multiple medical
events influenced by covariates like age, gender etc. [3] and thus, it is essen-
tial that synthetic data generation methods capture the temporal trend in the
data. Published research often compares the real and synthetic health data using
medical figures such as covariate plots. Dash et. al [3] and Yale et. al [4] both
reproduce published figures to illustrate the “utility” of the generated data. For
example, Dash et. al plot average minutes slept for each hour of the day for
different patient populations identified by the covariate age, and then visually
compared the plots as an indicator of resemblance of the real and synthetic data.
However, this analysis is qualitative in nature and is subject to user bias and
domain expertise. Thus, in this paper, we propose the use of four time-series
metrics such as Root Mean Square Error (RMSE), Directional Symmetry (DS),
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etc. to empirically quantify the real and synthetic medical time-series quality by
measuring the resemblance, and discuss the importance of evaluation stratified
by covariates in synthetic medical time-series data evaluation.

2 Method

2.1 Synthetic Data Generation

We generate synthetic medical data using four data generation methods and
then compare them with the real data from which they were generated.

The first method uses bootstrapping to sample with replacement from the
real training data with the same number of records as in the real data. As the
data is bootstrapped from real data records, the covariate plot would resemble
real data quite significantly. While this provides an excellent baseline model for
comparison since the univariate and multivariate statistics (e.g. the mean and
variance of each variable with and without covariate stratification) are preserved,
the data cannot be released since it does not preserve patient privacy.

The second and third methods involve randomly permuting the values of each
column by 10% and 90% respectively, resulting in two new synthetic datasets.
These two datasets have the exact same univariate statistics as the original
dataset. While the 10% randomly permuted data would not be much different
from the real data, the 90% randomly permuted data might lose the underlying
patterns from the real data since join dependencies between variables are severely
attenuated. For example, if we stratify data using one of the covariates, the
data trends may be lost. However, both act as good baseline models at the two
extremes of the spectrum.

Lastly, we use HealthGAN model for generating synthetic medical records as
the fourth method. The HealthGAN model handles categorical, continuous, and
time-series data as shown by [3] and [4] and is shown to preserve privacy while
retaining utility. In contrast to the other three methods, the HealthGAN model
attempts to capture the multivariate distribution of the data at the potential
expense of capturing the marginal or univariate distribution of each attribute.

2.2 Time-Series Evaluation Metrics

We use time-series evaluation metrics for empirically analysing the resemblance
of synthetic data covariate plots. We use metrics from Financial Time-Series
Clustering literature [5] as well as Time-Series Clustering [6] to quantify different
aspects captured by the synthetic data. Let {xk}}g:l represent the real time-
series and {yk}}:.:l represent the synthetic time-series in the covariate plots.

Root Mean Square Error (RMSE): It measures the closeness of values
at every time point between the real and synthetic data. It is calculated as:

3 ek - gy (1)
k=1
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We modify the RMSE values such that 1 indicates a perfect match while 0
indicates a complete mismatch, using the function:

_ 1
14

f(x) (2)

Pearson’s Correlation Coefficient (cc): It quantifies how well the linear
correlations present in the real data are captured by the synthetic data. We
modify the correlation formula such that 1 implies perfect correlation and 0
implies perfect anti-correlation using the mathematical function:

cov(x,y)
2> +1
Tp0y
— 3
5 3)
Directional Symmetry (DS): It is used to measure how well the trend
direction (upwards or downwards) in the real data is captured by the synthetic
data and is measured using:

n—1 . ]
1 1 if(zk+l — 2By (yF 1 — k) > 0
E dy, where dy = 4 = (@ o )(y yr) = @)
n—1 k=1 0, otherwise

DS with value 1 indicates perfect directional match while 0 indicates otherwise.
Short Time-Series Distance (STS):
It measures the distance between the finite difference approximation of the
derivatives of the two time series. We calculate STS as:

n-l <yk+1 gk gkl xk)2 -

thtl _ ¢k gkt _ 4k
k=1

We normalize the STS values to the range 0 (bad) to 1 (good) using the formula
defined in (2). Note: the difference t**1 — ¢* is always 1 in our study.

These metrics collectively assess the ability of generative methods to produce
high quality synthetic time-series data at the covariate level and empirically
identify the effectiveness of the metrics in analysing time-series figures.

3 Experimental Results

We use American Time Use Survey (ATUS) data from Dash et. al [3, 7] and
medical claims Autism Spectrum Disorder (ASD) data from Yale et. al [8] as case
studies for covariate time-series plot evaluation. The synthetic data produced
by the HealthGAN model in the papers has been shown to preserve privacy as
well as resemble the real data but no quantitative analysis for the time-series
has been shown. Thus, we deploy the four time-series metrics to quantify the
resemblance of the real and synthetic time-series.

ATUS data: ATUS data is a national, annual survey of 30K people in the
United States on how they organize their time across various activities. We plot
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Fig. 1: Average sleep times for various age groups across the seven days of
the week. Synthetic data sets, generated from ATUS by bootstrapped, 10%
randomly permuted and HealthGAN, show trends similar to the real data while
the 90% randomly permuted data does not capture any temporal trends.

the average sleep times for various age groups across the seven days of the week,
as shown in Figure 1, and compare them with the complete real data. Just by
looking at the plots, it is difficult to conclude which method is performing the
best, suggesting the need for quantitative quality analysis for better empirical
comparison. The results of the time-series metrics are shown in Figure 2.

ASD data: For our second case study, we use the medical claims Autism
Spectrum Disorder (ASD) dataset which includes diagnosis of more than 280,000
children across seven Comorbid Medical Conditions (CMCs). We plot the Sleep
disorder prevalence (binary data i.e. presence or absence of diagnosis) across
the 5 year enrollment period for the Race covariate. The synthetic covariate
plots are compared against the covariate plot for the complete real data and
the time-series metrics results are shown in Figure 2. The dataset was accessed
inside a secure environment provided by OptumLabs®. The several synthetic
data generation methods were deployed inside the environment for analysis. The
real data cannot be exported outside this secure environment.

For the ATUS data, bootstrap and 10% randomly permuted data have the
best results as they closely resemble the real data, demonstrating the effective-
ness of these metrics in quantifying quality of synthetic medical time-series. Us-
ing the metrics, we are able to empirically conclude that HealthGAN captures
the trend but not as effectively as the previous methods. This indicates that
privacy preservation comes at a cost of sacrificing covariate time-series quality.
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Fig. 2: Synthetic ATUS and ASD results using four different metrics: (a) ATUS
data: The 90% randomly permuted data performs the worst amongst all methods
with all methods performing bad on Short Time-Series Distance metric; (b) ASD
data: All methods are comparable but the HealthGAN performs worst on the
Directional Symmetry metric.

The 90% randomly permuted data loses the inherent meaning of patterns and
utility, and performs the worst on all metrics. The permutation and bootstrap
methods perfectly capture the univariate statistics by design, but the proposed
metrics show that there is considerable difference in their overall performance.

For the ASD data, the bootstrap and 10% randomly permuted data perform
well on all metrics. The HealthGAN model performs well on RMSE, Pearson,
and STS. However, it lags behind the other three models in capturing the direc-
tional aspect hinting at the need for further analysis. We also notice that the
90% randomly permuted data performs well. The ASD Sleep data is sparse and
binary, thus, permuting the columns does not lead to much deviation from the
original data across sub-populations of covariate plots. This is clearly evident in
Figure 3, where real data plot is shown against HealthGAN and 90% randomly
permuted data covariate plots.
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Fig. 3: Prevalence plots for Sleep disorder where 90% randomly permuted data
captures the general trend but the HealthGAN shows some deviation across all
sub-populations.

We observe that the 90% permutation closely resembles real data implying
that permuting binary prevalence Sleep data does not affect the covariate level
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grouping when the general trend across covariate categories is the same. This
explains the high performance of 90% random permutation on the four time-
series metrics. On the other hand, the HealthGAN synthetic data plot shows that
there are deviations across all sub-populations of the Race covariate, resulting
in lower metric values and suggesting that the model is actually introducing
temporal trends at the covariate level that do not exist in the original data.
Baseline models (bootstrapping and random permutation), that perform well
on univariate analysis, are not always the best synthetic data generation methods
as they might either not preserve privacy or may produce unusable data. The
comparison underscores the relevance of using additional covariate-level time-
series metrics to identify the quality of synthetic medical time-series data.

4 Discussion and Conclusion

The time-series evaluation metrics used enable us to quantify the quality be-
tween real and synthetic medical time-series. The results from the case studies
underscore the importance of using these metrics to evaluate resemblance in co-
variate temporal plots. While the generated synthetic data might resemble the
real data overall and preserve privacy, the same might not be true at the gran-
ular covariate level. Hence, it is vital that evaluation of synthetic data capture
trends across covariates as well using these and potentially other metrics. These
methods can also be used to quantify the difference between figures for real and
synthetic when assessing utility.
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