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Abstract.

This work introduces an autoregressive generative model for graphs which
is based on the transformer architecture and applied to the domain of
molecular graph generation. Utilizing the multi-head self-attention mech-
anism to directly model distributions over atoms and bonds, it can sam-
ple new molecular graphs in an autoregressive manner. The benchmark
framework MOSES is used to compare the proposed approach to other
state-of-the-art molecule generation models. It is shown that the model
is capable of generalizing from the training data to generate novel and
realistic molecules.

1 Introduction

Generative neural networks for graphs have been extensively studied in the last
years, e.g. [1, 2, 3]. Graphs are a common representation used in various problem
domains, and generative models can play an important part in discovering new
graphs. Furthermore, they can be used to traverse the search space in direction of
desired properties. Particularly in molecular design, graphs are a common data
structure in addition to the string-based representation. Although some graph-
based molecule generation models have been introduced in the past, most of these
models rely on recurrence to capture the underlying distributions over nodes and
edges. In this work, we introduce an autoregressive molecule generation model
based on transformers utilizing their self-attention mechanism. To investigate,
whether the generative model captures the underlying structural properties of its
training data, we evaluate the quality of the generated molecules with MOSES
[4] and compare it to other state-of-the-art models for molecule generation.

2 Related Work

Li et al. [1] introduced a graph generative model, which they also adapted to
the domain of molecules. They employed an architecture combining message
passing networks and recurrent neural networks to autoregressively generate
graphs. Building up on this, Liao et al. [2] improved the autoregressive sampling
strategy. By sampling a block of one or several rows of the adjacency matrix
at a time, the number of necessary decision step during graph generation is
drastically reduced. Since multiple edges are generated at the same time, a
mixture of multiple Bernoulli distributions is used to decide on the occurrence
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of edges. These mixture components can capture correlations between edges
in one block. GraphRNN [3] is another approach for the generation of graphs,
which uses a graph-level RNN and edge-level RNN for the generation of graphs.

Molecular generation models often operate on string-based representations
(commonly SMILES), since these are easy to access and process. Different
approaches have been introduced for the generation of molecules as strings,
e.g. recurrent neural networks [5] and variational autoencoder [6]. Despite its
straightforward implementation, a string-based representation bears some dis-
advantages. Generated SMILES strings are not necessary valid, and additional
model capacity has to be attributed to learning the language’s formal rules [4].
To overcome these limitations, Podda et al. [7] introduced a fragment-based ap-
proach for the generation of SMILES strings. Rather than sampling symbol by
symbol, this approach first extracts a vocabulary of fragments from the training
data, on which the language model is then trained.

Directly processing and sampling molecular graphs was e.g. demonstrated
by Li et al. [1]. Furthermore, Jin et al. [8] presented a generative model for
molecules based on a junction tree variational autoencoder. Rather than gener-
ating molecules on an atom-per-atom basis, this approach combines molecular
substructures which are extracted from the training data, assuring the genera-
tion of valid molecules. A few examples of the application of the transformer
architecture for molecular graphs can be found in literature. Cai and Lam [9]
demonstrated that it is possible to use transformers for graph-to-sequence learn-
ing. Additionally, the transformer architecture has been utilized for molecular
property prediction [10, 11]. Yoo et al. [12] presented a transformer specialized
in processing graphs. Nodes are processed as tokens, while the edges are incor-
porated in the transformer’s self-attention mechanism. The model was mainly
investigated for property prediction on smaller molecules, but can also be applied
to graph generation.

3 Transformer For Graph Generation

In the following section, a transformer-based generative model for graphs is
introduced. Albeit applicable to various types of graphs, in this work it is
evaluated as a generative model in the domain of molecular graphs.

3.1 Data Representation

This work utilizes the data sets provided by the benchmark framework MOSES,
which are based on the ZINC database and contain 1.6 million training and 176
thousand test molecules [4]. For our approach, the molecules are converted to a
sequence of atom tokens and a corresponding adjacency matrix. The adjacency
matrix marks missing bonds as zeros, while bonds are represented by a number
unique to the respective bond type – in this work single, double and triple bonds
are considered. Since molecules are processed by the transformer in a column-
wise manner, the lower left half of the adjacency matrix is masked with zeros.
Additionally, the columns are padded with zeros to a user defined maximum
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Fig. 1: Overview of the model architecture

number of atoms, to assure a fixed number of elements per column. Molecules
are processed in batches. If molecules in a batch are of different sizes, the input
sequences are padded to the longest molecule length in the batch.

3.2 Architecture

The architecture1 is pictured in Figure 1 for an exemplary molecule. The atom
sequence is processed by a trainable embedding layer. The adjacency matrix is
treated as a sequence of matrix columns and embedded by a linear layer. The
resulting two sequences are stacked, and a positional encoding is added, which
helps the transformer attending to specific positions in the sequence. The re-
sulting sequence forms the input for the transformer, which consists of multiple
stacked encoder blocks and implements the multi-head self-attention mechanism.
The encoded sequences are used to predict the target atom and bond logits.
However, this process differs between training and inference. In both cases, the
probabilities for the next atom type are computed by a fully connected decoder
network FCATOM. The next column of the adjacency matrix is predicted by
combining the encoded sequence with information about the next atom. This
way, the model can take a sampled atom’s type into consideration when pre-
dicting its bonds. During training, this is achieved by passing the ground truth
sequence of target atoms to the atom embedding layer and stacking it with the
encoded sequence. During sampling, the predicted atom probabilities are used
to predict an appropriate next atom type, which is then passed to the atom em-
bedding and stacked with the encoded sequence. In both cases, the atom type
enriched sequence is passed to a fully connected decoder network FCBOND to
predict the next column of the adjacency matrix. Like Lioa et al. [2] proposed,
the network not only predicts a single categorical distribution over the different
bond types for every value of the column, but rather a mixture of multiple cat-

1The source code can be accessed via https://gitlab.uni-oldenburg.de/gies6280/molegent
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Model type Valid Unique@1k Unique@10k IntDiv IntDiv2 Filters Novelty

CharRNN 0.9700 1.0000 0.9994 0.8562 0.8503 0.9943 0.8419
AAE 0.9400 1.0000 0.9973 0.8557 0.8499 0.9960 0.7931
VAE 0.9800 1.0000 0.9984 0.8558 0.8498 0.9970 0.6949
JTN-VAE 1.0000 1.0000 0.9996 0.8551 0.8493 0.9760 0.9143
LatentGAN 0.9000 1.0000 0.9968 0.8565 0.8505 0.9735 0.9498
Our Model (fixed) 0.9893 1.0000 0.9989 0.8569 0.8510 0.9943 0.6312
Our Model (depth-first) 0.9751 0.9998 0.9994 0.8568 0.8509 0.9896 0.7931

Table 1: Comparison of molecules created by different generative models

egorical distributions. This enables the model to capture correlations occurring
within one column of the adjacency matrix. Therefore, outputs produced by the
bond decoder have an additional dimension of size K, the user defined number
of mixture components. A single layer decoder FCα produces the K-dimensional
vector of probabilities for these components.

3.3 Training and Sampling

During training, the input sequence is processed in parallel. An autoregressive
attention mask is used to prevent the model from attending to subsequent entries
of the sequence. The model parameters are optimized by gradient descent using
the Adam optimizer. The loss is defined by the cross entropy between the
predicted atom and bond logits and the respective next atom type in the atom
sequence and the next adjacency matrix column.

Molecules are sampled in an autoregressive manner. The process is initiated
by passing a Begin of Molecule token and an empty adjacency matrix column
to the model. After every pass, the predicted probabilities are used to sample
the next atom type and adjacency matrix column. The input sequence is then
appended with the newly sampled values and passed to the model for the next
sampling step. This process is repeated until a maximum number of atoms has
been sampled. After sampling, the generated atom sequences are trimmed until
the first occurrence of an End of Molecule token. The atoms and the adjacency
matrix are convert to the desired output format with the help of Rdkit.

4 Experiments

To evaluate the quality of the generative model we utilize the evaluation tools
provided by MOSES. This allows a comparison to other generative models for
molecules, like the CharRNN, AAE, VAE, JTN-VAE and LatentGan model
provided by MOSES [4]. Our model is trained in two experimental conditions,
differing in the order of atoms in the training molecules. In the fixed ordering
condition, this order is the same as defined by the data set. However, previous
work has shown that graph-based generative models can be applied to a variety
of node orderings [1, 2]. Some orderings may be more difficult to learn, but
utilizing different node orderings per molecule could lead to a more diverse and
robust generative model. Therefore, in a second condition, for every molecule
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FCD (↓) SNN (↑) Frag (↑) Scaf (↑)
Model type Test TestSF Test TestSF Test TestSF Test TestSF

CharRNN 0.0732 0.5204 0.6015 0.5649 0.9998 0.9983 0.9242 0.1101
AAE 0.5555 1.0572 0.6081 0.5677 0.9910 0.9905 0.9022 0.0789
VAE 0.0990 0.5670 0.6257 0.5783 0.9994 0.9984 0.9386 0.0588
JTN-VAE 0.3954 0.9382 0.5477 0.5194 0.9965 0.9947 0.8964 0.1009
LatentGAN 0.2968 0.8281 0.5371 0.5132 0.9986 0.9972 0.8867 0.1072
Our Model (fixed) 0.0639 0.5495 0.6355 0.5841 0.9997 0.9979 0.9409 0.0564
Our Model (depth-first) 0.0783 0.5319 0.6148 0.5724 0.9998 0.9981 0.9334 0.0914

Table 2: Similarities between generated molecules and the test/scaffold test set

that is drawn as a training sample a random starting atom is chosen, and the
remaining atoms are sorted by traversing the graph in a depth-first manner.

For evaluation, both models are used to sample the recommended amount of
30,000 molecules each, which are passed to MOSES for analysis. This procedure
is repeated 10 times and the mean results are pictured in Table 1. Both models
generated mostly valid molecules. The model trained on fixed atom orderings
is only surpassed by the JTN-VAE, which is only capable of generating valid
molecules by design. The fraction of unique molecules in a random subset of
1,000 and 10,000 molecules is comparable to those of the other models. Two in-
ternal diversity metrics are given by MOSES estimating the diversity within the
generated molecules and therefore are an indicator on how well the model covers
the chemical search space. Both of our models slightly surpassed the other mod-
els in these metrics. A high fraction of the generated molecules passes chemical
filters (e.g. MCF, PAINS). The model trained on a fixed ordering generated a
lower number of novel molecules when compared to the other approaches. As
expected, the model trained on different depth-first orderings generates a clearly
higher fraction of novel molecules while still generating a high amount of valid
molecules. However, some other models still show a substantially higher fractions
of novel molecules. It is conceivable that the general necessity of a fixed node
ordering limits the model’s capability of generating more novel molecules. All
in all, in the presented experiments the proposed approach was able to compete
with other state-of-the-art molecule generation models and is able to generate a
high fraction of valid and diverse molecules.

Furthermore, MOSES features four similarity measure to determine how
closely the generated molecules resemble the test sets. The statistics for the
distance measures are presented in Table 2. The Fréchet ChemNet Distance
(FCD) uses ChemNet and compares the different distributions in the activation
of its last layer. The Nearest neighbor similarity (SNN) is defined by the mean
similarity of all molecules to their nearest neighbor. Fragment similarity (Frag)
and Scaffold similarity (Scaf) define cosine similarities between fragments and
scaffold frequencies between the sets. Comparing these similarities, both models
generalized well and generate molecules similar to those in the test sets. All in
all, the similarity scores are close to those of the other models. Furthermore,
the fixed ordering model generated molecules with a better FCD, SNN and Scaf
similarity to the test set and a better SNN similarity to the scaffold test set.
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5 Conclusion

This work introduces a transformer-based generative model for graphs that di-
rectly utilizes the multi-head self-attention mechanism to predict distributions
over nodes and edges. In experiments on the generation of molecular graphs, the
model was able to generate a high amount of valid molecules. Different distance
metrics suggest that the model generalized well to unseen molecules, and the
model is on par with other state-of-the-art molecule generation models. Due to
the parallelizability of the transformer architecture and no necessity of message
passing, the framework could scale very well with bigger problems.
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