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Abstract. Real-time anomaly detection in urban areas from massive
data is a recent research field with challenging requirements. This pa-
per presents a lightweight framework for real-time anomaly detection in
multivariate time-series extracted from large-scale Mobile-phone Network
Data (MND). Our solution relies on unsupervised machine learning applied
to MND collected at individual antennas of a nation-wide French mobile
phone network operator. The proposed framework is based on a two-step
approach: (i) the offline stage aims at assessing the typical behaviour of the
antennas; (ii) the online stage performs real-time comparison of incoming
data with respect to the detected typical behaviour. Results related to a
real case-study of terrorist attack in the city of Lyon show that our frame-
work can successfully detect an emergency event almost instantaneously
and locate the anomalous area with high precision.

1 Introduction

Large-scale user mobility data has recently started to be used to detect anoma-
lous mass behaviour at district or city-wide scales, and solutions leveraging such
data to promptly inform relevant authorities of critical situations have been pro-
posed [1]. Global Positioning System (GPS) data are among the most used type
of mobility data leveraged to such purpose because of their high spatial accuracy
and temporal resolution. However, this type of data is rarely available on large
scales and users can be easily identified from the tracks, raising relevant privacy
concerns. On the other hand, Mobile-phone Network Data (MND), passively
collected by network providers for billing or network management purposes, is
an opportunistic form of user mobility data which has the advantage of being
easily anonymized and massively provided on large scales and extremely high
penetration rates [2]. However, such data are often regarded as less accurate
than GPS data, thus difficult to analyse without proper pre-processing steps.
Anomaly detection is a well-studied topic in many fields including fraud de-
tection, security breaches, natural disaster alert, etc. A thorough review of ex-
isting anomaly detection techniques for temporal data is provided in [3, 4]. More
recently, a particular interest has raised towards performing real-time anomaly
detection in urban areas [5] because of the growing availability of massive on-
line data from Internet of Things (IoT) devices, social networks data as well
as highly instrumented urban infrastructures. Urban areas need indeed efficient
real-time monitoring systems to ensure the security of large masses of human
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population. The anomaly detection system introduced in [6] is among the few
examples leveraging MND to identify the time and location of anomalous mass
behaviour and the geographical spread of the anomalies. However, the authors’
solution relies on supervised machine learning, thus requiring anomalous data to
be explicitly labelled, which is hard to achieve on large spatio-temporal scales.
Such label constraint is not present in the solution proposed in [7] that ex-
ploits an unsupervised approach, thus reducing the effort and costs necessary
to acquire labels for the training process. However, the solution still relies on
a computationally-intensive deep learning framework which requires powerful
hardware support and makes it difficult to frequently update the trained model.
The approach is therefore less adapted to a fully distributed city/region-wide
massive deployment of the anomaly detection system.

The main contribution of this paper is a real-time unsupervised lightweight
anomaly detection framework for large-scale MND. It requires very few parame-
ters to be set, and is based on a statistical model that ensures lightweight compu-
tation and almost instantaneous anomaly detection, which makes our solution a
perfect fit for an online deployment and particularly adapted to monitor densely
populated areas. Sec. 2 describes the overall architecture of the framework. The
first results for a real-situation case study are presented in Sec. 3.

2 Anomaly Detection Framework for MIND

2.1 MND Dataset Description

The proposed approach is specifically designed to detect anomalous situations
from MND. For each antenna of an instrumented mobile network, the provider
is able to probe and collect traffic information related to different types of ser-
vices. Traffic volumes are thus provided, per-service and per-antenna, with a
one-minute temporal granularity. Our solution aims at detecting, in real-time,
anomalies in traffic volumes with respect to a compressed description, which we
call signature, of the typical traffic volume observed per-service at each antenna
of the monitored region. In this paper, for prototyping and evaluation purposes,
we only use a historical MND dataset containing 3G and 4G mobile data col-
lected from March 2019 to June 2019 on the nation-wide Orange network. 50%
of the data is used for training, and the rest is used for the real-time anomaly
detection stage. Note that the online stage of the proposed solution is designed
to work on streaming data that will be provided, in real-time, by the network
provider in the final operational deployment. Each entry of the available dataset
is defined as a vector s,(t) = (v0(t), ..., v~ 1(t)) where a is the identification code
of the antenna, t is the time of the observation and v¢ is the volume of events
observed for service ¢. Tab. 1 details the fields of the dataset.

2.2 Framework Architecture

Fig. 1 depicts the architecture of the proposed framework. First of all, the frame-
work includes a pre-processing module (M.0) performing the following operations
on the MND: (i) multiple antennas can be located the same geographical coor-
dinates. In such case, they are treated as one single node and related volumes
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Field | Value

t Year (2019)-Month (3-6)-Day (1-31) Hour:Minute

a Latitude, Longitude
3G: {Call, SMS, Packet-Switched, Circuit-Switched}
4G: {Call, SMS, Handover, Service Request}
Number of events in N

Table 1: MND set fields and values

are aggregated; (ii) volumes can be unavailable in case of intermittent demand.
In this case, a zero volume is assumed at the corresponding time slot.

Then, the architecture is composed of the following main modules: (M.1) an
offline machine learning stage that extracts a typical per-service traffic behaviour
at each node, as detailed in Sec. 2.3; (M.2) a real-time anomaly detection stage
based on the comparison of the real-time data with the typical behaviour of the
node, as detailed in Sec. 2.4.

/" M.1: Offline detemn
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" M.0: Network Initialization and Pre-process PEE—

Reference signatures Error distributions Local Inreshc\d
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Fig. 1: Framework architecture with the M.0, M.1 and M.2 modules

2.3 Offline module (M.1): Training Stage

The methodology for building reference signatures for mobile data is based on
our previous work [8] and is the first step to extracting a typical behaviour.
The signatures are defined per-service and per-node. For each pair of node-
service, all data is grouped by the chosen level of granularity. As studied in
our previous work, a weekly signature with a granularity of 1 minute (finest
granularity for the available dataset) appears adequate because it allows grasping
the most relevant differences in traffic consumption, by relying on the well-
known hypothesis of cyclic nature of human activities [9]. To build the signature
for a given node a and service i, we consider the service volume data v¢(d,t)
per minute for a specific day d over multiple days of past observations, i.e.,
ded={di,ds,..dy}. Let us denote as d’® C d the set of days in the dataset
that correspond to the day of the week §. For instance, d™°N groups all Mondays
in the dataset. Then, the generic element in the signature of node a for service
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1 is defined as: ' 4
ro(6,t) = p ({vi(d,t) | d € d’})

for time slot ¢ during day of the week §, where pu(-) represents the median
operator, applied to the set within parentheses. Unlike the mean, the median is
robust to outlier values, which occur frequently in mobile traffic data possibly
due to sudden variations in human communication activities and anomalous
events. The latter must be filtered out in order to derive a reference normal
behaviour. The weekly signature r’(t) is then defined as the concatenation of
the one-minute time-ordered samples r¢ (d,t) over the seven days of the week.

The weekly signature 7% (¢) is however still sensitive to inherent noise in the
data. Therefore, to further refine it, a low-pass filter is applied to the time
series for smoothing purposes. The spectral density of the weekly signature is
analysed to choose the right cut-off frequency for the filter: once converted to the
frequency domain with Fast Fourier Transform (FFT), only the highest power
frequencies are kept. After applying inverse FFT, the resulting filtered signal
7 (t) corresponds to the reference signature of the given node a for service i.

MND are an intermittent kind of data, i.e., the observed traffic can be null
for some services at given moments due to the absence of network activity, thus
raising the problem of infinite values for many error metrics such as the relative
error. Therefore, we use the instantaneous absolute error (AE) with respect to
the reference signature, defined at each time slot t as: € (t) = |vi(t) — 7 (t)],
where v’ is the real-time volume for service i at node a.

In the offline phase, the AE is leveraged to fit a model of the error at each
node and for each service. To that purpose, we compute the AE with respect
to the reference signature over a large set of days of past traffic observations,
used as a training dataset. Let us define X! the random variable associated to
the AE of service 7 at node a. By using the training dataset, the distribution of
X! is thus fitted to a Gamma law '), using the Maximum Likelihood Estimator
method. A comparative analysis performed on the available dataset with multi-
ple theoretical distribution laws has confirmed the Gamma one being the most
adequate choice to accurately fit the error distribution and detect rare events,
such as abnormally high errors. We assume that the variables X!/ of node a
are independent: this hypothesis has been verified by a correlation test between
the values of AE computed for each service individually.

Based on the fitted error distribution, we define the anomaly likelihood rate
L at time t for service i at node a as the tail distribution at point € (¢), i.e.,
Li(t) = P(X. > € (t)) where the probability P is derived from the fitted Gamma
law. An anomaly is observed at time ¢ on a node a if the observed traffic re-
lated to the ensemble of network services significantly deviates from the reference
behaviour. To that purpose, we need to convert the multivariate anomaly like-
lihood indicator into an univariate one. Therefore, we define a global Anomaly
Log-likelihood Rate (ALR) at time ¢ for all services ¢ € I as the sum of the
logs of the likelihood rates, i.e., Aq(t) = ,c;log Li(t). The system detects an
anomaly at time ¢ when the ALR is lower than a threshold value, i.e., A, (t) < 6,.
The 6, threshold value is defined as the ¢** quantile of the ALR distribution fit-
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ted for that node over the training dataset. ¢ is the only hyperparameter of our
framework and can be selected by fixing an average detection rate. It is worth to
highlight that 6, is node-specific and is stored for the real-time detection step.

2.4 Online module (M.2): Real-Time Detection

After the training phase, at each node a, a vector s,(t) of real-time data is fed to
the model. By comparing the volumes of this vector with the reference signatures
7i(t), the model derives an AE value € (t) for each service i. The AE values are
then used to determine whether the real-time vector s,(t) is consistent with the
typical behaviour or can be declared as an anomaly. The model derives the ALR
value at time ¢ as described in Sec. 2.3 by using the typical Gamma distribution
of each service. Then, if the ALR value is lower than the threshold 6,, the
real-time vector s,(t) is labelled as an anomaly. Otherwise, s,(t) is labelled as
normal. The time complexity for one detection is O(nm) where n = |I| and m is
the time complexity of the distribution fitting operation. Note that the absolute
value of the ALR can be used as an indicator of the intensity of the anomaly.

3 Experimental Results: Terrorist Attack in Lyon, France

A terrorist bombing occurred at Bellecour square, Lyon (France), on Friday 24th
May 2019 at 5:28 PM!. In the following analysis, we focus on nodes in a radius
of 300 m around the attack location. During the training stage, we set ¢ = 1/720
for each node, i.e., a detection rate of one anomaly every twelve hours.
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Fig. 2: Event Detection on node-scale and city-scale

Fig. 2a depicts the event detection from the real-time volumes of the call and
handover services at one of the nodes in the selected area. The first anomaly
is detected at 5:34 PM, i.e., six minutes after the official time of the attack.
Fig. 2b shows, for the same node, the evolution in time of the likelihood rate
of each service, as well as the ALR (blue curve). We can see that soon after
the bombing occurs, the ALR rapidly falls below the threshold. Concerning
the whole selected area, our method detects a first anomaly for multiple nodes

LLe Progrés, 2020 [online] https://www.leprogres.fr/actualite/2020/05/27 /un-an-apres-1-
attentat-a-lyon-les-riverains-de-la-rue-victor-hugo-ont-ils-tourne-la-page
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between 5:34 PM and 6:13 PM. The larger offset with respect to the official time
of the attack for some nodes could be explained by considering antennas’ network
coverage features. Some of them could cover zones that are still geographically
close, but not in the immediate proximity, of the location where witnesses were
mostly concentrated at the beginning of the event. These results are encouraging
because other nodes, farther away from the attack location, do not detect any
anomaly at all on that day, thus making the anomaly easy to locate with accuracy
at the scale of the city as shown in Fig. 2¢ (anomalous zones are colored in red).

4 Conclusions and research directions

In this paper, we introduced a new MND-based framework for anomaly detec-
tion in real-time. We have proposed an efficient algorithm based on simple and
unsupervised machine learning concepts: our model relies on very few parame-
ters and is lightweight enough to be deployed on large scales such as cities. The
model has also proven to be accurate and very reactive, hence minimizing the
delay of detection in a real-situation case study. We aim to more thoroughly
study the false alert rate and delay of detection as well as the impact of adding
contextual data from social networks on the reliability of the system.
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