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Abstract. Mixtures of von Mises-Fisher distributions can be used
to cluster data on the unit hypersphere. This is particularly adapted
for high-dimensional directional data such as texts. We propose in this
article to estimate a von Mises mixture using a [; penalized likelihood.
This leads to sparse prototypes that improve both clustering quality and
interpretability. We introduce an expectation-maximisation (EM) algorithm
for this estimation and show the advantages of the approach on real data
benchmark. We propose to explore the trade-off between the sparsity term
and the likelihood one with a simple path following algorithm.

1 Introduction

Many classical mixture models are poorly suited to high-dimensional data, in-
cluding those derived from the vector representation of text. When the data
is directional [1], i.e. when it is their correlation rather than their Euclidean
distance that matters, Gaussian-type models are even less suitable. For such
data, it is natural to carry out a normalisation that places them on the unity
sphere. As an alternative to spherical k-means [2], mixtures of von Mises-Fisher
(vMF) on this sphere have been shown to provided good clustering results, cf
[3, 4, 5].

In this article, following [6], we propose a [ penalty for a mixture of von Mises-
Fisher to induce sparsity of directional means and thus improve the understanding
of classification results for high-dimensional data. Parameters are estimated by
an EM algorithm based on the solution from [4]. The penalty parameter
is set automatically using the BIC model selection criterion and leveraging a
path following strategy. Sparse prototypes are represented graphically via a
simple reordering heuristics inspired by [7, 8] (see Figure 1 for an example): it
emphasizes a partial co-clustering structure as well as shared features that are
not detectable with co-clustering methods.

Notations: Matrices are denoted with boldface uppercase letters, vectors with
boldface lowercase letters. Norm Iy is noted as ||.||; and I as ||.||,. Data are
represented by a matrix X = (z;;) of dimension n x d with z;; € R and the
it" row of this matrix is represented by a vector x; = (2,1, ... ,xid)T, where T’
is the transpose. The partition of all lines I into k clusters is represented by a
classification matrix Z with elements z;, in {0, 1} satisfying 22:1 zin = 1.
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2 Mixture of von Mises-Fisher distribution

First, we recall the mixture model proposed in [4]. The von Mises-Fisher (vMF)
distribution in dimension d > 2 is supported by the (d — 1) dimensional unit
sphere embedded in R¢ (denoted by S?~1). Its probability density function is
given by

J(@|p. k) = calr) exp™®, (1)
where [|u||y =1 and x > 0 are the parameters. The normalization term c4(k) is
jed/2-1

27T)d/2ld/2,1(:‘€) ’

ca(r) = ( (2)

with I, is the modified Bessel function of the first kind and order r.
A mixture of K von Mises Fisher distributions is specified by K vMF densities
fr(x]0r) with 0 = (py,, kp) for 1 < h < K. The mixture density is given by

f(@]©) = anfu(xl6n), 3)
h=1

with © = {011,...,041(,01,...,9[(}, ap > 0et Z’Ileah =1.

We use a standard hidden variable approach to represent the mixture: an
observation x is generated from (3) by first sampling a hidden variable z in
{0,1}X with 3, z, = 1 and P(z;, = 1,Vl # h,z = Ola) = ay; and then by
sampling « from f, if z;, = 1. For n independently observations (x1, ..., ®,) we
obtain the following complete data log-likelihood

n K
ILo(©) =Y > zin (o, + In fi(@]0r)) - (4)
i=1 h=1
Based on this complete data-likelihood, the only complex step of an EM based

estimation of the parameters is the computation of x;, which is detailed in [4].

3 Proposed model

3.1 Penalized likelihood

Following [6], we add a I3 norm penalisation to the log-likelihood in order to favor
sparsity in the parameters. More precisely, we seek to estimate © by maximizing
the log-likelihood penalized

K
InLy(0) =W L(©) ~ 8 llull - (®)
h=1

where [ regulates the trade-off between likelihood and sparsity. Similarly, the
penalized complete data log-likelihood In L, ,,(©) is obtained by subtracting the
same penalty term from In L.(©).
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3.2 EM algorithm

To derive the EM algorithm, let us first denote ©(™) the estimate of the parameters
at iteration m of the algorithm. We denote T(m) = P(z, = 1|x;,©0™)) the
probability that x; was generated by component h of the mixture. Then the E
phase consist in computing

Qp(010™) :=Ey p(z x,00m)InLcy(O),

n K K
=330 (e +1n fa(2i164) = B sl (6)
h=1

i=1 h=1

M step maximizes Qp(©|0™)) with respect to © and under the constraints
Zthl ap =1, ||pplls, = 1 and Kk, > 0 for 1 < h < K. To respect these
constraints on «ajp, and py, we introduce K + 1 Lagrange multipliers, respectively
¢ et (A\n)1<n<k leading to

K K
L£©,¢A0) =Qp@0™) + ¢ an—1)+ > M —pim,). (7)

h=1 h=1

Compared to the derivations of [4], the main difference comes from the calculation
of the subgradient £ with respect to ;. We have indeed

(@ ¢, Al® m) = Kp, <Z Tih $”> — 2Anitn; —68th gl (8)

=1

The first-order optimality condition is 0 € 8M£(@,C,)\|@(m)). By writing

i) = iy i i, we get

nhrhj QAh/th + 5 if fhy <0
0y £(©,6NO) =S ™ — ef,e € [131]if g = 0 (9)
IﬁhT’,(gL) — QAh/th — ﬂ if Hhj > 0
Some algebraic manipulations yield

() (m l‘ih|7’(m)| _

oy :sign(rh] max — ,
NoS 1nh|rh] |- )

0], (10)

with A\p = \/Zj 1 mh\r |— B)2. Note that the addition of the penalty
introduces a coupling between kp, and pp, that does not exist in its absence (we
see that if we fix 8 = 0, &y, is no longer involved in the definition of p;). One
must therefore solve

C:i(/{h) — I“Lh Z'L 1 ’L(h )ml- (11)
calrin) 2in Ti(I;n)
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(m)_
We use the approximation proposed in [4]. If we introduce Fm) — B i T
' h 1 Tr'(}m) ’

Kp, is given by

ryd— (")
L= ()

We propose to estimate from g, from nglm), then to update k. We could iterate

those updates to reach a fixed point, but experiments showed that this was not

necessary.

(12)

Rp =

3.3 Path following approach

Rather than testing for different values of 5 on a grid, we propose to use a path
following approach. We initialise the path by estimating the parameter for the
non sparse model with 8y = 0. Equation (10) shows that provided that S is
small enough, no component will be set to zero. This enables us to determine the
smallest value of 3 that creates some sparsity, i.e. 1 = ming j .m0 |KnTh ]
Starting from the solution with § = 0, we set 8 to this value and run the EM
algorithm to convergence.

This process is repeated by adding to the sum of the S obtained in previous
iterations the minimal increment that increases the parsimony of the u,. We
obtain Sy using

Ay =Pfn-1+ ~  min |KnTh; — Bn-1]- (13)
h,g,|knrhi—BN—1]>0

To avoid taking too many steps on this path, we set values smaller than the
chosen numerical precision threshold to zero after updating 3.

3.4 Model selection

We propose to select the model retained for a dataset by using the BIC criterion.
Only non-zero parameters for 5 are considered as effective parameters (according
to the consistency results obtained in [9]). So we have

BIC = =2 x L(©) + C x log(n), (14)

with C, number of parameters, equal to C = (K =1+ K) + >, Zj L,.,;%0-

4 Experimental results

We compare our approach to alternative solutions on the popular dataset called
CSTR [10]'. It conmsists in n = 475 abstracts of technical reports (TRs) pub-
lished in the Department of Computer Science at the University of Rochester
between 1991 and 2002. Each abstract is given by a d = 1000 vector. The ab-
stract are classified into four research areas: Natural Language Processing(NLP),

L Available here: https://github.com/dbmovMFs/DirecCoclus/tree/master/Data.

266



ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Robotics/Vision, Systems, and Theory. We use the proposed model with values
of K ranging from 2 to 5. For each mixture, we use the path following technique
coupled with the BIC criterion to select an optimal value of 5.

Our model is compared to a standard non sparse mixture of vMF distribution
with K = 4 as well as to co-clustering variant dbmovMF [7]. We use also as
reference Gaussian mixture models adapted to high-dimensional data, namely
HDDC [11] and Fisher EM [12]. We use the Adjusted Rand Index (ARI) to
compare the results. All reference models are used with K = 4 clusters, while
this value is automatically selected based on the BIC for our model. Results are
reported in table 1. They show that our approach is able to retrieve the structure
of the CSTR in an unsupervised and fully automated way by improving both
over the ARI and the sparsity. Those results have been confirmed on other data
sets.

Models ARI  Sparsity
K =4beta=0 0.56 0

K = 2 beta = 87.17 0.42 0.34
K = 3 beta = 77.59  0.53 0.47
K = 4 beta = 65.37 0.67 0.58
K = 5 beta = 45.19 0.507 0.55

dbmovMF K = 4 0.55 0
HDDC K=4 0.04 0.22
Fisher EM K=4 0.50 0.42

Table 1: Results CSTR

Figure 1 shows the sparsity of p for CSTR dataset where black blocks mean
important features in the cluster representation (non zero values). Moreover, u
was reordered as in [7, 8] to reveal its block structure. In contrast to the two
articles cited, which require a variable to belong to only one class, our approach
highlights variables of common importance for each class and those that are
more discriminating for one or more classes. All this makes it easy to see the
similarities but also the discriminating elements of each class.

5 Conclusion

In this article, we seek to penalize the likelihood of a mixture of von Mises-
Fisher distributions to increase the parsimony of directional means. We show
that the penalization by means of the [; norm allows us to reach our end
using an adaptation of the EM algorithm as well as the combination between
a path following approach and the BIC criterion to automatically select an
optimal penalization parameter. Experimental results show that we outperformed
reference method on a real world data set.
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Figure 1: Sparsity of p for K = 4 beta = 65.37 on CSTR dataset. From common
(left) to more discriminative features (right).
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