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Abstract.

Clustering is used in many applicative fields to summarize information
into a small number of groups. Motivated by behavioral extraction issues
from urban data, the interest of this paper is to propose a classification
method that allows modeling the evolution of cluster profiles over time
while considering common regressive effects. The parameters of the pro-
posed model are estimated using variational approximation because max-
imum likelihood estimation is not suitable in this case. The ability of the
model to estimate parameters is evaluated using various simulated data
and compared with two other models.

1 Introduction and Motivation

In many application domains, clustering observations into a reduced set of classes
is meaningful to highlight common aspects within the clusters. Considering
urban data collected in the energy or mobility domains, clustering gives insights
on the typical user behavior patterns ([1], [2]). Customers’ habits and preferences
can also be classified to build recommendation systems, for example ([3]).

Usually, the clustering of user behaviors or customer preferences does not
consider potential changes or evolutions. Incentive policies, price changes or in-
novations can lead to changes in these behaviors and habits. Thus, it may be
interesting to consider the dynamic and evolving aspect of behavior in the clas-
sification task. The evolution of behaviors in clustering problems is often taken
into account by using segmentation methods to identify periods where behaviors
are static and constant, then perform clustering on these specific periods. The
segmentation phase can be performed manually based on solid assumptions or
using stochastic methods such as Hidden Markov Models ([4]).

This paper presents a model that attempts to group similar observations
into a reduced set of clusters while estimating class profiles through a dynamic
approach using auto-regressive processes. The proposed model summarizes in-
formation in a small group of clusters while dynamics and evolutions are simul-
taneously considered without going through a first segmentation step. Moreover,
the hypothesis that known factors have a global effect on observations is made.
The idea is to consider the impact of those exogenous factors, which are com-
mon to all observations, and unknown endogenous effects, specific to the clusters,
which the model aims to estimate.

As said before, the proposed model aims at building classes in an unsuper-
vised way while modeling class centers dynamically and estimating the effects
of common exogenous factors. We place ourselves in the framework of latent

411

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



variable model using mixture models. These models allow a certain flexibility
to build more or less complex models. This is why they are appreciated and
often used in the case of classification problems with latent variables ([5]) using
in particular the Expectation-maximization algorithm to solve the optimization
problem.

However, in [6], the authors point out that the EM algorithm is not suit-
able for some complex generative models involving multiple dynamics latent
processes. In [7] the authors estimate time dependent effects via Variable Neigh-
borhood Search algorithms. But, the dynamic aspect of class centers is not taken
into account by this algorithm. This topic has been explored in [8] using vari-
ational inference methods. These techniques seem to be better suited than the
adapted versions of the EM algorithm to solve dynamic latent variable estima-
tion problems. These previous results motivate the choice to use variational
approximation to estimate the proposed mixture model.

The second section of this paper is devoted to the construction of the model
and its presentation. Section 3 presents the inference methods and the algorithm
used for parameters estimation. Finally, the last section is devoted to the testing
and evaluation of the proposed model by comparing it with other models using
different datasets and three criteria.

2 Model definition

To formalize the model, let’s consider the following notations:

• (x1, . . . ,xi, . . . ,xn) a set of n observations, where xi = (xit)t is a sequence
of T observed data, with ∀t, xit ∈ R,

• ut (t ∈ J1, T K) a (p+ 1)-dimensional vector representing p exogenous and
observable factors. We include the constant value 1 in the vector to take
into account a level parameter (bias).

The model proposed in this article assumes that the series (x1, . . . ,xn) can be
grouped into K clusters. It is characterized by a regressive common component
reflecting the effect of known observed factors, and by cluster-specific profiles
reflecting the effect of latent dynamic factors. According to this assumption, we
consider that xit can be explained by the following model:

∀i ∈ J1, nK, ∀t ∈ J1, T K; xit = u′ta +
K∑

k=1

zikbkt + eit, (1)

where zik is a binary variable equal to 1 if the observation i belongs to the class
k and 0 otherwise. We assume that zi, satisfying zi = k if zik = 1, follows a
Multinomial distribution with parameters π = (πk)k=1,...,K . Also, the profile
(bkt)t=1,...,T corresponds to the unobservable group-specific profiles, eit is a cen-
tered and normally distributed noise with variance vk and a = (a0, . . . , ap) ∈
R(p+1) refers to the regression coefficients associated to exogenous factors and
a0 denotes the level coefficient.
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The latent profiles (bkt)t=1,..,T are modeled as first-order auto-regressive pro-
cesses as follows:

∀t ∈ J1, T K,∀k ∈ J1,KK, bkt = Φkbkt−1 + νkt, (2)

where, νkt is a centered Gaussian noise with variance wk, and bk0 is normally
distributed with µk0 and σk0 as mean and variance parameters. The coefficient
Φk satisfies the stationnarity constraint |Φk| < 1. Then, using previous elements,
the vector of parameters of the model is as follows:
Θ = {(vk, wk, πk,Φk, µk0, σk0)k=1,...K ,a} .

The model defined by Equation (1) is not identifiable. In fact, the coefficient
a0 can be confused with class profiles (bkt)(k,t). In this case, it is necessary to
add a constraint to the model. In the present case, by setting ã = (a1, . . . , ap),
and noting ũt the corresponding p-dimensional exogenous variables, we have:

u′ta +
∑
k

zikbkt = a0 + ũ′tã +
∑
k

zikbkt = (a0 − α) + ũ′tã +
∑
k

zik(bkt + α).

Thus, depending on the value of α, there is an infinite number of choices for
a0 and bkt. To ensure the identifiability, we add the following constraint to the
model:

∑K
k=1

∑T
t bkt = 0.

After presenting the model parameters and assumptions, the next session is
dedicated to the theory related to variational inference methods and algorithm
used for estimation.

3 Variational inference for parameter estimation

In our case, the complex structure of the model makes parameter estimation
via the maximum likelihood method and the EM algorithm intractable. It is
therefore necessary to get around this problem by using variational inference
methods. To do so, a function F (q,Θ) is introduced and built from a distribution
q over the latent variables (b,z) called variational distribution. The function F
is defined such as: F (q,Θ) = Eq(Lc(Θ)) + H(q), where H(q) is the entropy
of the distribution q, and Lc refers to the complete log-likelihood of the model.
The function F is called ”The Evidence Lower Bound” because it satisfies the
following equation ([9]):

L(x; Θ) ≥ F (q(z,b),Θ).

The main goal is to estimate the variational distribution and estimate model
parameters by maximizing the Evidence Lower Bound. To simplify this max-
imization problem while ensuring an accurate parameter estimation, some as-
sumptions are usually made. In that case, the function q has the following form:
q(z,b) =

∏n
i=1 qz(zi)

∏T
t=0

∏K
k=1 qb(bkt), where qz is the distribution of latent

variable zi and qb is the distribution of the processes (bkt). In this model, vari-
ables bkt were naturally supposed to be Gaussian with mean parameters mkt
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and variance λk. The variables zi are distributed according to a Multinomial
distribution with parameters (τik)k=1,...,K . This variational distribution leads
us to introduce variational parameters that will be estimated by maximizing the
Evidence Lower Bound. The variational parameters of the models are:
{τ = {(τik)k=1,..,K;i=1,..,n}, m = {(mkt)k=1,..,K;t=0,..,T }, λ = {(λk)k=1,..,K}}.

Using previous elements made in Section 2, the Evidence Lower Bound can
be explicitly written. The algorithm used for parameter estimation iteratively
maximizes the Evidence Lower Bound according to each parameter one by one
while considering the others as fixed. Updating class centers variational param-

eters (m
(q+1)
kt )(k,t) requires an adapted version of Kalman filter ([8]).

The initialization consists in setting a starting point for parameters. Initial

values are chosen for variance parameters (v
(0)
k , w

(0)
k , σ

(0)
0 ), proportion parame-

ters (π
(0)
k ), variational variances (λ

(0)
k ). Then, initial values are computed for

(m
(0)
kt ), (τ

(0)
ik ) and coefficients a using the K-means algorithm.

It is assumed that the algorithm has converged to a solution when the up-
dated class centers are sufficiently closed to those obtained in the previous iter-
ation. In other words, the stopping criterion for this algorithm is, with ε → 0,
1

KT

∑
t,k(m

(q+1)
kt − m(q)

kt )2 < ε. Once this condition is reached, the algorithm
stops.

4 Evaluation of the model

The algorithm has been implemented and tested using simulated data. First,
it is important to define criteria to evaluate the performances of the proposed
model and to compare them for different data sets, to the performances obtained
with models used as references.

4.1 Criteria for model performance evaluation

As a reminder, the model is supposed to be able to identify the global exogenous
effects, classify observations, and estimate class centers as dynamic processes.
The objective is to evaluate the model on these three aspects using three criteria.
Notice that cluster labels have been reorganized to maximize the classification
rate. First, the mean square error is used to evaluated the ability of the model to
estimate class profiles: crit1 = 1

KT

∑T
t=1

∑K
k=1(m̂kt−bkt)2. Then, the ability of

the model to identify and estimate exogenous effects is evaluated using the mean
square error computed on exogenous factors such as: crit2 = 1

T

∑T
t=1(u′tâ −

u′ta)2. Finally, the correct classification rate is used to evaluate the model:
crit3 = 1

n

∑n
i=1 1{zi=ẑi}.

We will compare the performances of the proposed model to those obtained
with two reference models:

• Constant class center model: This model consists of estimating class
centers as constant values over time.
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• Two-step regression model: This model estimates the exogenous ef-
fects and then the dynamic class centers using an adapted version of the
algorithm in which regression coefficients are no longer updated. The com-
parison between the proposed model and this allows us to show the utility
to include exogenous effect estimation inside iterations.

4.2 Results

The model is evaluated by generating various data sets to cover a large sample
of different cases. Data sets with two and four classes and different numbers
of observations and sequences have been generated. For each configuration,
models have been tested on two hundred various datasets. First, we consider
the fixed time window T = 100 and vary the number of observations (n = 20
and n = 150). Then, we fix the number of observations to n = 100 and set the
time window T = 80 and T = 300. The following results are obtained with four
clusters.

CRIT1 CRIT2 CRIT3

T=100 n=20 n=150 n=20 n=150 n=20 n=150

Proposed
Model

0,460 0,133 0,071 0,059 0,988 1,000

Constant
Model

6,994 6,981 0,151 0,151 0,792 0,806

Two-step
Regression

0,519 0,333 0,148 0,136 0,987 0,992

n=100 T=80 T=300 T=80 T=300 T=80 T=300

Proposed
Model

0.847 0.761 0,072 0,049 0,977 0.999

Constant
Model

3.921 3.669 0.085 0.066 0.610 0.882

Two-step
Regression

0.857 0.777 0.085 0.069 0.978 0.997

Table 1: Average criteria calculated for data sets of different sizes

According to the results shown in Table 1, we can note that the criteria
are decreasing with the size of the temporal window (T ) and the number of
observations (n). It means that the more data there is, the more accurate the
model is. The previous table also shows that, according to all of the three criteria,
the proposed model outperforms the other approaches. The performances of the
proposed model compared to the model with constant class centers highlight
the interest of estimating the class profiles dynamically. Although, the proposed
model performances are close to the ”two-step regression” ones, we observed
that it requires fewer iterations to converge.
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5 Conclusion

This paper presents a dynamic latent variable model to solve a classification
problem by considering class centers’ evolutions over time. Indeed, the main
objective of the model is to estimate class profiles as random walks. Moreover,
the model is able to estimate the effect of known exogenous factors on the ob-
servations.

In this article, the number of clusters K is assumed to be known. Further
investigations can be made on the choice of this hyper-parameter thanks to
selection criteria such as the BIC criterion for example. The presented model
represents a first step towards a more general model where exogenous effects are
not global but specific to each cluster, which highlights structural effects within
clusters.

Future works should concern the use of the proposed model to characterize
occupant behavior in buildings, for a better estimation of energy performances.
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