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Abstract.

The Lottery Ticket hypothesis by Frankle and Carbin states that a randomly
initialized dense network contains a smaller subnetwork that, when trained in
isolation, will match the performance of the original network. However, iden-
tifying this pruned subnetwork usually requires repeated training to determine
optimal pruning thresholds. We present a novel approach to accelerate the prun-
ing: By methodically evaluating different Supermasks, the threshold for selecting
neurons as part of a pruned Lottery Ticket network can be determined without
additional training. We evaluate the method on the MNIST dataset and achieve
a size reduction of over 60% without a drop in performance.

1 Introduction

Interest in decreasing the size of neural networks has existed since at least the
year 1988 [1, 2]. Different methods have been proposed that can be used to
achieve a decrease in network size of up to 90% while retaining performance
[3, 4, 5]. Size reduction has multiple advantages: If the network is pruned after
training while otherwise keeping the trained weights constant, this may result
in reduced storage size, less energy consumption and faster computation during
the application phase [6]. If it is possible to retrain the smaller network from
scratch, this may result in less overfitting because the number of parameters
has decreased [7]. Moreover, if a smaller but still effective network topology
can be chosen before training, this can reduce the training time because fewer
parameters have to be optimized.

One state-of-the-art pruning approach, by Frankle and Carbin [6], is based
on their Lottery Ticket hypothesis, which states that a randomly initialized dense
network contains a subnetwork that can be trained in isolation and will match
the performance of the original network. The subnetwork can be uncovered by
training the dense network and setting a percentage of the parameters with the
smallest magnitude to zero, and freezing them. If the remaining parameters
are then set to their initial values, and one retrains the smaller network, then
the training time and test performance will usually improve. However, selecting
the correct neurons in this step requires repeated training and evaluation of
subnetwork candidates.

To avoid this repeated training, we adopt a finding from Zhou et al. [8], who
show that these subnetworks perform significantly better than chance before they
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are trained. Zhou et al. take a randomly-initialized and trained dense network;
the trained parameters are ranked by a value given by sign (winitial) ·wtrained so
that parameters with a large magnitude that retained their sign are ranked high.
A percentage p% of the lowest-ranking parameters is set to zero and frozen; the
rest is reset to a constant with the same sign as their initial value. The resulting
network is not trained again; rather, it can be evaluated directly. Zhou et al.
call the corresponding 0-1-masks ”Supermasks”.

We propose a novel pruning method of using Supermasks to determine prun-
ing thresholds for Lottery Tickets without additional training. The values of the
parameters come directly from the initial random initialization; the only training
information comes from deciding which of these random values to set to zero.
We further show that the methodology applied on MNIST outperforms hyper-
optimization of the network layer sizes: Our method can yield a significantly
smaller size while retaining the same accuracy and training speed.

2 Methodology

We describe a methodology for neural network pruning based on the Lottery
Ticket hypothesis and Supermasks. We assume that we have a fully connected
multilayer perceptron that has been trained and should be pruned. Importantly,
we also assume that the weights with which the network had been initialized
before training have been saved.

Following the Lottery Ticket hypothesis, we take our initial network param-
eters, set some of them to zero and freeze them, and then train the resulting
network. The result will effectively have a (much) smaller size. There are differ-
ent methods for choosing which of the initial parameters to prune: In [6], this
is done by selecting all parameters which had a small magnitude after training.
How many parameters are set to zero depends on the specific threshold. In [8],
the authors show that instead of setting those parameters to zero whose magni-
tude after training is minimal (i.e., |wtrained| is minimal), one gets better results
by setting those parameters to zero for which the value sign (winitial) ·wtrained is
minimal. In other words, we keep those values that have both a large magnitude
after training and retain their sign and set the other parameters to zero. In any
case, it is necessary to choose a good threshold to apply the method effectively.

2.1 Selecting the threshold

We describe a novel method for selecting a good pruning threshold based on
insights from [8]: When choosing the parameters as outlined above, the result is
just a version of the initial, random parameters with some set to zero. However,
without further training, the resulting networks nonetheless already perform
surprisingly well. This is where the term Supermask comes from: We take the
initial, random parameters and multiply them with a mask of zeros and ones,
and achieve surprisingly good performance.

This leads us to our novel way of threshold selection: We compute the masked
networks for different thresholds and then (without training!) check their per-
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formance on the validation set. We choose the threshold that yielded the highest
performance. More to the point, we choose the masked network corresponding
to that threshold and train it to yield our pruned network. Both the compu-
tation of the masked networks and the evaluation of them are computationally
cheap since no training is required.

2.2 Summary of steps

The algorithm for applying Lottery Ticket pruning is as follows:

1. Take a fully connected multilayer perceptron, initialize it with random
values and save these initial values.

2. Train the network to satisfaction.
3. For many different thresholds t, compute the parameters for a masked

network Mt using the formula

wnew

i
:=

{

winitial

i
if sign

(

winitial

i

)

· wtrained

i
≥ t,

0 otherwise.

4. Evaluate all the networks Mt on a validation set and choose the best-
performing network M∗.

5. Freeze all the parameters of M∗ which are exactly zero, so that they don’t
change during training.

6. Train M∗ to satisfaction.

3 Experiment and Evaluation

To evaluate our method, we apply it to the well-established MNIST dataset [9]
ten times using different random seeds. The dataset contains a collection of
28 × 28 grayscale images of single digits. It contains 60.000 training examples
and 10.000 testing examples, which are used for validation. For each of these
runs, we also perform a hyperoptimization grid search with the goal of reducing
the layer size as a comparison.

3.1 Baseline neural network, training and early stopping

We chose a fully connected neural network with three layers as a baseline archi-
tecture. The input size is 28× 28 = 784, the first layer has size 200, the second
has size 30 and the output layer has size 10 since the dataset has ten classes.

Because we need a meaningful trained baseline that does not overfit, we use
early stopping. After saving the initial, random parameters, the neural network
is first trained for 20.000 iterations, using the Adam optimizer [10] with learning
rate 0.0012, a batch size of 60 (as in [8]) and cross-entropy loss. As in [8], we
determine the number of training epochs according to the validation loss and
then retrain the network from scratch starting from the saved, initial parameters
for as many epochs as determined. For all random seeds, the minimal validation
loss is achieved around iteration 5000. Across random seeds, the validation
accuracy is 0.101± 0.016 before training and 0.977± 0.001 after training, where
the ± sign denotes the standard deviation.
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Fig. 1: Left: The validation accuracies of the untrained, masked networks for
different thresholds aggregated across all ten seeds. Even though the masked
networks were never trained explicitly, they reach an accuracy significantly better
than chance level (0.1). Right: Relative sizes of the networks after pruning with
different thresholds. The variance across seeds is too small to be visible. The
colored area indicates the thresholds that are part of the evaluation.

3.2 Supermasks

For the computation of the masked networks, we consider thresholds t from the
set {0, 0.01, 0.02, . . . , 0.2}. As described above, we take the initial parameters of
the network and set some of them to zero, using the formula described in Sect.
2.2. The exact size reduction achieved by a particular threshold depends on the
initialization, but the variance is low across seeds: t = 0 results in a relative
size of 64.6% ± 0.4, while t = 0.2 results in 4.1% ± 0.6. The size for different
thresholds is visualized in Figure 1 (right). For each of the ten networks, we
determine the threshold which resulted in the highest validation accuracy. Here,
the variance is high across the different seeds. The mean threshold is found to be
at 0.049±0.049, resulting in a relative network size of 38.7%±17.9. The resulting
accuracy of these masked and otherwise untrained networks is 42.6% ± 15.2,
where the smallest value observed is 19.1% and the largest is 70.0%. Fig. 1
(left) shows the accuracies obtained by pruning with different thresholds. This
result is in line with [8]: Masking the initial, random values does indeed lead to
high accuracy, even before training.

3.3 Resulting pruned networks

After selecting a threshold using the Supermask evaluation, the corresponding
masked network is trained (steps 5 and 6 of our methodology). For comparison,
we also use a hyperoptimization grid search which evaluates smaller values for
the baseline network’s layer sizes. While the baseline uses sizes of 200 and
30 neurons for the first and second layers, respectively, the hyperoptimization
additionally considers all possible combinations of (50, 100, 150) for the first layer
and (5, 15, 25) for the second layer. We are thus comparing each Lottery Ticket
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Fig. 2: Left: The validation loss during training of pruned networks and hyper-
optimized networks, evaluated every 100 iterations across all ten random seeds.
The hyperoptimized networks are grouped into three categories based on their
training performance. The performance of the pruned networks is at least as
good as all other hyperoptimizations. Right: The relative network size and min-
imum validation loss of the pruned networks and the hyperoptimizations. All 10
seeds are visualized. It is apparent that the Lottery Tickets tend to outperform
the hyperoptimizations both regarding size and validation performance.

network to 1 + 3 · 3 = 10 other architectures.
To train the pruned network, we take the best-performing masked network

from the previous step and train it for 5000 iterations. For comparison, we also
train the ten networks with different layer sizes for 5000 iterations, starting from
random initializations. The validation loss for all runs is visualized in Figure 2
(left). We have grouped the different hyperoptimizations into three groups ac-
cording to their performance. The graph shows that the pruned network trains
at least as quickly and effectively as all the hyperoptimization networks. After
5000 iterations, the pruned network achieves a validation loss of 0.091 ± 0.007
while the original baseline network architecture (without any layer size reduc-
tion) achieves 0.109±0.019. The ”High performer” group of hyperoptimizations
as a whole achieves a final validation loss of 0.106±0.016. At the same time, the
pruned networks that were found by our method are generally smaller (pruned
more aggressively) than the results from the hyperoptimization, as shown in Fig.
2 (right). The optimal Supermasks, and therefore also the pruned networks, have
a relative network size of 38.7%± 17.9.

Our method produces networks that are comparable in size to the low-
performing hyperoptimizations, while they tend to outperform even the high-
performing hyperoptimizations. See Fig. 2 (right), where the minimum valida-
tion loss is compared to the sizes of the tested network. The graph shows that the
pruned networks based on Lottery Tickets tend to achieve a better performance
while simultaneously being smaller in size compared to the hyperoptimizations.
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4 Conclusion

We present a novel methodology for pruning neural networks based on the Lot-
tery Ticket hypothesis and Supermasks. Our method determined the threshold
for selecting neurons to be part of a pruned Lottery Ticket network by evaluating
different Supermasks. By using Supermasks, the network alleviates the need for
additional training time for each evaluated subnetwork. Our result outperforms
hyperoptimization grid search on a dense neural network trained on the MNIST
dataset by yielding on average 60% smaller networks without a reduction in
classification accuracy. In future work, we will conduct experiments on larger
datasets and comparisons with other pruning methods to further improve the
understanding of the merits of Lottery Ticket-based pruning.
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