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Abstract. Thermal sensors are underrepresented in the field of Advanced Driver­
Assistance Systems whereas their capabilities to acquire images independently of 
weather or daytime can be very helpful to achieve optimal pedestrian and vehicle 
detection. This underrepresentation is due to the small amount of available public 
datasets. This lack of training samples and the difficulties of building such datasets 
are a real hurdle to the development of an object detector dedicated to thermal 
images. Thanks to YOLOv4 and its detection performance, we show in this paper 
that fine­tuning this neural network requires few samples to achieve satisfying 
performance, outperforming the results of state­of­the­art detectors. 

1 Introduction 

Pedestrian detection is a major topic in Advanced Driver­Assistance Systems, ADAS, 
or video surveillance. State­of­the­art algorithms using a Convolutional Neural 
Network, CNN, and multiple modalities fusion achieve high performance in this task, 
while not perfect. Infrared and Visible images fusion detectors are topics of high 
interest, these two modalities combining themselves decently. However, this implies 
costly and complex systems, especially because of the sensors alignment requirements. 
Moreover, in low­light scenes, visible images provide limited information for detection. 
At night, thermal objects detectors perform as well as visible and thermal fused objects 
detectors. 

Thermal images present less details than visible ones, less texture information, 
poor spatial resolution, and are blurred due to various causes: atmosphere, misfocusing, 
high wavelength captured by the sensors and heat radiation. There is also a lack of 
available datasets. Some exist, like KAIST [1] and FLIR ADAS [2], but compared to 
visible imaging datasets, the number of labeled objects is much lower. Gathering, 
filtering, and labeling plenty of images becomes a tedious task. High resolution thermal 
sensors are highly expensive, and the recurrent low quality of thermal images makes 
difficult the annotation step. 
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 In this paper, it is shown that fine­tuning YOLOv4 only requires a small dataset 
to achieve satisfying results. This could lead to better database constitution and 
annotation, resulting in more certain and accurate detections. 

2 Related Works 

2.1 CNN for Object Detection 

During the last years, significant progresses have been performed in the field of object 
detection, due to the emergence of CNN and their efficiency for object classification. 
In addition of classification, an objects detector needs localization.  
 Girshick et al. [3] used a region proposal module allowing a CNN to classify 
them, but to process a single image, around 2.000 classifications are required. Girshick 
improved this idea with Fast­R­CNN [4], computing the whole image in the CNN and 
then projecting the proposed region in the last layers of the network to determine the 
bounding boxes, improving the execution time. Later Ren et al. [5] proposed Faster R­
CNN, a network using an object detection algorithm that permits the network to learn 
by itself the region proposal.  
 At the same time, Redmond et al. [6] proposed a one stage detector: YOLO, You 
Only Look Once. It suggests the likely regions and their classification based on a small 
set of candidate regions and features of the whole image. Single Shot Detector, SSD, is 
due to Liu et al. [7] combining YOLO and R­CNN to get a good compromise between 
the quality of detection and execution time. Now, YOLO evolved in new improved 
versions, achieving state­of­the­art compromise between accuracy and speed [8]. 

2.2 Object Detection in Thermal Images  

While many recent works address multimodal detection using both RGB and thermal 
images, few works focus on thermal images only. John et al. [9] proposed a CNN for 
pedestrian detection, then Thermal Images augmented by Saliency maps have been 
used to train a Faster R­CNN network by Ghose et al. [10]. Domain adaptation is a 
topic of interest with the work of Hermann et al. [11] transforming thermal images into 
visible grayscale ones. Later Devaguptapu et al. [12] use Generative Adversarial 
Network, GAN, to generate synthetic thermal images from RGB, and in the same way, 
Self­Supervised Network has been explored to maximize information between thermal 
and visible spectra, increasing performance of objects detection in thermal images [13].   

3 Methodology 

3.1 YOLOv4 

The authors of YOLOv4 have selected an architecture realizing the best compromise 
between the network resolution, the number of convolution layers and the parameters 
number at the learning step.  
 They choose a backbone with high classification quality on MS COCO dataset 
[14], they use Spatial Pyramid Pooling, SPP, and Path Aggregation Network, PANet, 
to multiply the receiving fields and aggregate the classifier characteristics with those of 
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the detector. Finally, the head of this network has the same architecture than YOLOv3. 
Various methods of data augmentation like Flip, Random Scale, CutOut, MixUp, 
CutMix, Mosaic, and a modified Spatial Attention Module, SAM, permit to obtain 
better results on MS COCO. 
 Our objective is to apply object detection to real fields like ADAS, safety, video 
­surveillance. In these domains, the execution time constitutes an essential challenge. 
YOLOv4 quality detection appears very efficient compared to the state­of­the­art 
speed­to­cost ratio. 

3.2 FLIR ADAS Dataset 

FLIR ADAS proposes 10228 images with 80000 annotations. These images have been 
acquired during a large period, 60% by day and 40% by night in various scenes. The 
images of the FLIR dataset are available under different formats: the raw images 
directly issued from the sensor and the modified and enhanced ones thanks to specific 
FLIR algorithms.  
 To avoid effects of noise generated by FLIR enhancement algorithms, we use a 
dynamic expansion, to transform raw images into grayscale images, centered on a fixed 
mean of 0.5 and a fixed standard deviation of 0.25, as seen in Fig. 1. This transformation 
permits to obtain an 8­bits grayscale dataset closer to the MS COCO dataset used as a 
pre­training for YOLOv4 detector. 
 

 
Figure 1: Comparison between different translations from raw to 8­bits grayscale 

(Image 1: Obtained from a Min­Max Linear Transformation, Image 2: Provided by 
FLIR, Image 3: Mean­Standard Deviation Linear Transformation) 

 
 Four different classes have been annotated in this dataset: Persons, bicycles, cars, 
and dogs. Dogs have very few annotations compared to the other classes, we choose 
not to use this label to train and evaluate the detector. 
 

 Persons Bicycles Cars Dogs Total Images 
Train 13725 3297 36642 178 7860 
Validation 4955 441 5209 12 1360 

Table 1: FLIR ADAS Classes Distribution on Train and Validation split 
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4 Experiments and Results 

4.1 Training 

The YOLOv4 detector was fine­tuned with images of size 640x512 pixels, with a batch 
size of 64. A stochastic gradient descent, SGD, was used with a learning rate of 0.001. 
Each training used pre­trained weight on MSCOCO and lasted for a minimum of 60 
epochs. The score on the validation set was calculated for each epoch and the best one 
was kept at the end of each experiment. 

4.2 Experimental Results 

The YOLOv4 evaluation on the FLIR ADAS database is performed according to the 
train and validation split suggested by FLIR. We have also tested the YOLOv4 model 
with pre­trained weights on MSCOCO, without fine­tuning. To compare the detectors 
performance, we choose to use average precision, AP, defined in [15], and mean 
average precision, mAP. It has been observed that, in the validation set, the number of 
bicycles annotations is significantly smaller than the number of persons and cars: 4 %, 
compared to 46.7 % and 49.11 %, respectively. Such a distribution can result in an 
important bias on the results: in fact, an improvement of the bicycles detection has not 
the same weight than the same one on the persons or cars classes. That is why we define 
the weighted mean average precision, w­mAP, which considers the number of 
annotations in each class, given the following equation: 
 

𝑤-𝑚𝐴𝑃 = ෍ 𝐴𝑃௜ ∗  
𝑙௜

𝐿

ே

௜ୀ଴

 

 
where (i) is the class index, (𝐴𝑃௜) is the Average Precision of the class, (𝑙௜) is the 
number of labeled objects of the class (i) in the test set, and (L) the total number of 
labeled objects in the test set. 
 The Table 2 shows the comparison between our experiments and state­of­the­art 
results: 
 

 Persons Bicycles Cars mAP  w­mAP 
Faster R­CNN (ResNet­101) [5] 54.8 42.76 67.99 55.18 60.77 
SSD­512 (VGG­16) [7] 70.2 53.99 80.55 68.24 74.6 
YOLOv4–MSCOCO [8] 81.19 46.27 79.93 69.13 79.11 
YOLOv4–MSCOCO­FLIR (Ours) 88.12 74.96 91.57 84.88 89.26 

Table 2: Average Precisions (%) between YOLOv4 and other detectors 
 
 Such results show the ability of YOLOv4 pre­trained on MSCOCO to recognize 
persons and cars, even when thermal images are not considered in the learning base. A 
fine­tuning step produces significantly improved results on the FLIR database. 
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4.3 Ablation Study 

For the considered dataset, various ablation levels have been realized. For each of them, 
the validation base remains unchanged. Each sub­base is represented by the number 
1/N if only one image among N is processed. For example, 1/2 means that one in two 
images is selected, in order and without randomization. Different compositions are 
proposed in Table 3:   
 

 Persons Bicycles Cars Total Images 
FLIR 1/2  6830 1654 18309 3930 
FLIR 1/4 3377 835 9120 1965 
FLIR 1/8 1704 409 4523 982 
FLIR 1/16 873 206 2244 491 

Table 3: FLIR Ablations Classes Distributions. 
  
The Table 4 presents the mAP and the w­mAP scores for FLIR 1/2, FLIR 1/4, FLIR 
1/8 and FLIR 1/16: 
 

 Persons Bicycles Cars mAP w­mAP 
FLIR (Full Base) 88.12 74.96 91.57 84.88 89.26 
FLIR 1/2  87.65 70.91 91.01 83.19 88.6 
FLIR 1/4 86.72 71.87 90.59 84.84 88.0 
FLIR 1/8 84.4 65.84 89.24 79.83 86.0 
FLIR 1/16 80.52 59.76 88.04 76.10 83.35 

Table 4: Average Precisions (%) of YOLOv4 fine­tuned on different ablation levels. 
 
 We have repeatedly trained the same dataset with the same parameters and seen 
a standard deviation of 1% in the results. It is shown that using only a fourth of the 
images of the FLIR Dataset leads to almost the same performance, within the range of 
the standard deviation, that with all the available data. We also remark that using one 
of sixteen images leads to poorer results than using a non­fine­tuned YOLOv4 detector 
on the Persons and Cars classes. Although fine­tuning on thermal images gives a good 
increase in results for all classes, the bicycle class gets the higher increase in AP. We 
believe that the FLIR Database has more variability of the representation of a bicycle 
than the MSCOCO dataset, explaining this large increase. 

5 Conclusion 

We have fine­tuned YOLOv4 on thermal images to improve pedestrian and vehicles 
detection on the FLIR ADAS dataset.  This detector outperforms state­of­the­art 
methods without being trained on thermal images and fine­tuning leads to even better 
results. We have evaluated the performance between different dataset ablations. We 
have shown that YOLOv4 allows the use of smaller datasets, simplifying the setup of 
an object detector dedicated to thermal images. In the case of video­based dataset, we 
have observed that reducing training data to a fourth of the available images does not 
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significantly decrease the results. Moreover, we propose an alternative to the mAP 
score: the w­mAP, considering the distribution of labeled objects in the test set. In a 
near future, we will work on the possibility to use this detector in a multimodality 
framework, and more precisely to imagine novel methods able to reduce the training 
cost of a detector in the case of underrepresented multimodalities.  
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