
IF: Iterative Fractional Optimization

Sarthak Chatterjee1, Subhro Das2, Sérgio Pequito3

1- Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy NY, USA

2- MIT-IBM Watson AI Lab, IBM Research, Cambridge MA, USA

3- Delft Center for Systems and Control
Delft University of Technology, The Netherlands

Abstract. Most optimization problems lack closed-form solutions of the
argument that minimizes a given function, and even if these were avail-
able it might be prohibitive to compute it. As such, we rely on iterative
numerical algorithms to find an approximate solution. In this paper, we
propose to leverage fractional calculus in the context of time series analy-
sis methods to devise a new iterative algorithm. Specifically, we propose
to leverage autoregressive fractional-order integrative moving average time
series, whose coefficients encode a proxy for local spatial information. We
provide evidence that our algorithm is efficient and particularly suitable
for cases where the Hessian is ill-conditioned.

1 Introduction

Many problems in today’s world can be modeled as optimization problems
where we seek to find the minimum (or maximum) of an objective function
f : Rn → R [1]. For instance, in a learning problem, we aim to minimize a loss
index that measures the performance of a neural network on a data set.

Notwithstanding, most optimization problems do not possess numerically
viable closed-form solutions [2]. Furthermore, due to the ever increasing di-
mensionality of data used to test a variety of optimization problems, iterative
algorithms need to be employed to attain an approximate solution. At the core
of the iterative algorithms, we can commonly find three key ingredients [3]: (i)
a descent direction d ∈ Rn, (ii) a learning rate (or step) α ∈ R; and (iii) local
spatial information across different variables (i.e., w ∈ Rn). In a nutshell, the
iterative algorithms can be written as

wk+1 = wk + αkdk, k = 0, 1, . . . , (1)

where the descent direction, dk ∈ Rn and the step, αk ∈ R, might change over
time k, with gradient descent and Newton’s method being particular instances of
the same [4]. We can also consider memory in the process, which is an alternative
to speeding up the convergence while not resorting to second-order methods, such
as in the Heavy-Ball method [5] or Nesterov’s Accelerated Gradient method [6],
where we have the general form of the update step

wk+1 = wk + αkdk +m(wk−1, . . . , wk−T), k = 0, 1, . . . , (2)

641

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

where m : Rn×T → Rn is a function that accounts for the previous iterations,
or memory in short. Since second-order methods capture (local) spatial proper-
ties of the function through its cross-derivatives, they are generally faster than
first-order iterative methods. However, first-order iterative algorithms require
less computational power and memory storage.

In order to motivate the use of time series processes in optimization, we start
with the update step in (2), where the last term could be seen as the time series
model. Furthermore, there is no learning step and the process is implicitly cast
by the data obtained, sampled from the function.

In this paper, we seek to leverage fractional-order calculus [7], in order to
propose a novel iterative algorithm termed as IF (Iterative Fractional). Specif-
ically, we leverage autoregressive fractional-order integrative moving average
(ARFIMA) processes that allow the modeling of long-term memory and in-
terlaced couplings among spatial and temporal time-scales [8]. We show that
the fractional-order differencing parameter can effectively be perceived as a sub-
stitute for local curvature. We demonstrate the efficacy of IF on a variety of
problems and show that our method solves unconstrained optimization problems
without the explicit need for a step size, gradient, or Hessian information. The
major advantages of IF lie in cases where the Hessian is ill-conditioned, which
is particularly important in the context of neural networks [9].

2 IF : The Iterative Fractional Algorithm

A class of stationary long-term processes zt modeled as autoregressive fraction-
ally integrated moving average (ARFIMA) processes are described by

φ(B)(1−B)dzt = θ(B)at, (3)

for d ∈ R, d being the fractional differencing parameter. Here, at is a white noise
sequence having zero mean and bounded variance σ2

a, the polynomial equations
φ(B) = 1 −

∑p
i=1 φiB

i = 0 and θ(B) = 1 +
∑q
i=1 θiB

i = 0 have roots that
are greater than unity in absolute value, and B is the backward shift operator
with the property Bmzt = zt−m. The general form of the processes that can be
represented using (3) are called ARFIMA(p, d, q) processes.

For d > −1, we can employ the binomial expansion formula to explicitly
expand the operator (1 − B)d as (1 − B)d =

∑∞
j=0 πjB

j , with π0 = 1, and

πj = Γ(j−d)
Γ(j+1)Γ(−d) , j = 1, 2, . . . , with Γ(·) being the Gamma function defined

by Γ(x) =
∫∞

0
sx−1e−s ds for all complex numbers x with R(x) > 0. We note

that the weighting coefficients πj can be defined recursively in j. Further, even
though the binomial expansion of the operator (1 − B)d consists of an infinite
number of terms, in practice we will always consider an approximation that still
preserves the dependency of parameters described.

Given a time series, we carry out the following steps to obtain the parameters
in (1): (i) apply fractional differencing on the original time series and note
the order of the fractional difference d that makes the time series (close to)

642

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

wide-sense stationary; (ii) determine the ARMA parameters p, q, {φi}pi=1, and
{θi}qi=1 using the (fractionally) differentiated time series; (iii) perform a forecast
for a requisite number of steps ahead in time with these ARMA terms; and
(iv) fractionally integrate the forecasted ARMA data to obtain the forecast of
the ARFIMA process. Note that fractional integration may be interpreted as
fractional differentiation but with a fractional differencing parameter of −d.

Let us use the IF algorithm in order to solve the following unidimensional
unconstrained optimization problem x? = argminx∈R f(x), with a given initial
point x0. For the purpose of illustration, we consider the function f(x) = x2,
the grid discretization step h ∈ R, the number steps of memory P ∈ R, and
its corresponding functional values f(x0), f(x0 − h), . . . , f(x0 − (P − 1)h), with
pre-specified values of x0, P , and h. First, we notice that the sample autocorre-
lation function (sACF) obtained from the aforementioned values and depicted in
Figure 1 suggests slower than exponential algebraic decay and statistically signif-
icant (for a significance level of 0.05) dependency on past lags, with a large area
enclosed by the composite sACF curve and the horizontal axis. This suggests
that the ARFIMA(p, d, q) processes described above can successfully predict the
behavior of the functional values obtained.

Fig. 1: sACF plot of the functional values f(x0), f(x0−h), . . . , f(x0− (P −1)h),
with f(x) = x2, x0 = −1, P = 500, and h = 0.01.

Next, we consider the pre-specified values of p and q along with the Whit-
tle estimation procedure [10] to find the fractional differencing parameter d and
the autoregressive and moving average coefficients {φi}pi=1 and {θi}qi=1 respec-
tively. Using these estimated parameters, we perform an ARFIMA time series
prediction P ′ steps into the future, to obtain the time series y1, y2, . . . , yP ′ . As
depicted in the Figure 2, we find that our ARFIMA time series predictions are
limited in their predictive capabilities since they can only capture information
about the local behavior of the function upto a certain finite number of time
steps into the future. Since many descent methods in the optimization litera-
ture require us to satisfy f(xk+1) ≤ f(xk) for all k, we select the largest possible
value of P ′′ ≤ P ′, such that P ′′ satisfies y1 ≥ y2 ≥ . . . ≥ yP ′′ ≤ yP ′′+1. If, at
this stage, f(xk + P ′′h) > f(xk), we update the discretization step h by h/2
until the condition f(xk + P ′′h) ≤ f(xk) is satisfied. Once that is obtained, we

643

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

update the current iterate as

xk+1 =

{
xk + P ′′h, if f(xk + P ′′h) ≤ f(xk)

xk − P ′′h, if f(xk − P ′′h) ≤ f(xk)
. (4)

The algorithm terminates when |f(xk+1) − f(xk)| ≤ ε, where ε is a specified
tolerance. Although we have detailed the working of the IF algorithm for a
single dimensional problem, we can apply the IF algorithm to iteratively run
over each individual dimension in order to solve multiple dimensional problems
as well.

Fig. 2: ARFIMA time series predictions.

3 Illustrative Examples

In what follows, we will demonstrate the working of the IF algorithm on two
illustrative examples and show that our approach is particularly suited to
problems where the Hessian is ill-conditioned. We first consider the uncon-
strained optimization problem x? = argminx∈R2 (x2

1 + 0.001x2
2). This objec-

tive function has a Hessian matrix H =

[
2 0
0 0.002

]
, with the condition num-

ber of H, cond(H) = 2/0.002 = 1000. The starting point is chosen to be
x0 = [

√
3/2 1/2]T. We use P = 100 steps of memory, an initial grid discretiza-

tion step of h = 0.01, and ε = 10−3, with P ′ = 100 steps ahead ARFIMA(4, d, 0)
time series predictions. The convergence profile of the evolution of functional
values versus the iteration number when the IF algorithm is used to solve this
problem is shown in Figure 3. The IF algorithm is able to attain convergence in
43 iterations while the gradient descent algorithm with inexact backtracking line
search (to tune the step size) takes 3453 iterations to converge. This suggests the
significant advantages of using the IF algorithm in problems where the Hessian
is ill-conditioned.

Next, we evaluate the performance of the IF algorithm on a simple feedfor-
ward neural network. The motivation behind this is the fact that feedforward

644

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Fig. 3: Convergence profile showing the evolution of functional values with
iteration number when the IF algorithm is used to find the minimizer of
f(x) = x2

1 + 0.001x2
2.

neural networks often possess ill-conditioned Hessians, as demonstrated in [9].
Consider the simple single-layer perceptron network structure shown in Figure 4.
Here, the inputs x1 and x2 are weighted using the weights w1 and w2 respec-
tively, and the output y is a result of applying an activation function %(·) on the

weighted sum
∑2
i=1 wixi.

Fig. 4: Structure of the simple feedforward neural network used in our example.

Assume that the activation function %(·) is the Gaussian Error Linear Unit

(GELU) [11], given by %(s) = s
2

(
1 + erf

(
s√
2

))
, where the error function

erf z = 2√
π

∫ z
0
e−t

2

dt for any z ∈ C. For the training process, the weights w1

and w2 are arbitrarily initialized such that w2
1 + w2

2 = 1. Now, consider the ar-
rival of a single training sample (x1, x2, t) = (1, 1, 0), where t is the true output
that the neural network is to produce when it has been properly trained. In

this case, y = %(w1x1 + w2x2) = w1+w2

2

(
1 + erf

(
w1+w2√

2

))
, since x1 = x2 = 1.

If we consider a regression problem using the squared error L(t, y) = (t − y)2

as a loss function, then L(t, y) = (0 − y)2 =
(
w1+w2

2

(
1 + erf

(
w1+w2√

2

)))2

. To

minimize the loss function L(t, y) we use the IF algorithm. Using P = 100
steps of memory, an initial grid discretization step of h = 0.01, ε = 10−3, with
P ′ = 100 steps ahead ARFIMA(4, d, 0) time series predictions, we obtain con-
vergence in 18 iterations with the optimal values w? = [−1.0144 0.9997]T and

645

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

L? = 5.2488×10−5, thus showing the efficacy of the IF algorithm on single-pass
training of a feedforward neural network. In comparison, gradient descent with
inexact backtracking line search takes 60 iterations to converge for the same
initialization of the weights w1 and w2.

4 Discussion and Conclusions

In this paper, we proposed the IF algorithm, that uses fractional calculus-based
ARFIMA time series models to determine an approximation of the argument
that minimizes a given unconstrained optimization problem. Our proposed
method does not require gradient or Hessian information, or explicitly tuning a
step size, an issue that, in spite of receiving widespread coverage in the optimiza-
tion literature, still proves to be a bottleneck in the design of such algorithms.
Future work will entail the automated selection of the autoregressive and moving
average orders from the functional values at every time step and the automa-
tion of determining the fractional-order coefficient, which proved to be the most
computationally intensive step in our approach. Furthermore, we will validate
our approach in a wider range of optimization benchmarks.

5 Acknowledgment

The authors gratefully acknowledge the support by the National Science Foun-
dation under Grant Number CMMI 1936578.

References

[1] Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for Machine Learn-
ing. MIT Press, 2012.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[3] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

[4] Dimitri P. Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997.

[5] Boris T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[6] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, vol-
ume 87. Springer Science & Business Media, 2013.

[7] Keith B. Oldham and Jerome Spanier. The Fractional Calculus: Theory and Applications
of Differentiation and Integration to Arbitrary Order. Elsevier, 1974.

[8] Andreas Klaus, Shan Yu, and Dietmar Plenz. Statistical analyses support power law
distributions found in neuronal avalanches. PloS ONE, 6(5):e19779, 2011.

[9] Sirpa Saarinen, Randall Bramley, and George Cybenko. Ill-conditioning in neural network
training problems. SIAM Journal on Scientific Computing, 14(3):693–714, 1993.

[10] Peter Whittle. Gaussian estimation in stationary time series. Bulletin of the International
Statistical Institute, 39:105–129, 1961.

[11] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

646

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

