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Abstract. To overcome the lack of annotated resources in less-resourced
languages, unsupervised language adaptation methods have been explored.
Based on multilingual word embeddings, Adversarial Training has been
successfully employed in a variety of tasks and languages. With recent
neural language models, empirical analysis on the task of natural language
inference suggests that more challenging auxiliary tasks for Adversarial
Training should be formulated to further improve language adaptation.
We propose rethinking such auxiliary tasks for language adaptation.

1 Introduction

Current state-of-the-art approaches to address semantic-level tasks in natural
language processing (NLP) rely on supervised learning methods. However, col-
lecting annotated data in different languages is a challenging and time-consuming
task, especially for less-resourced languages. To tackle this challenge, methods
that are capable of leveraging to a target language the knowledge acquired when
trained on a source language have been proposed, some of them without requir-
ing labeled data on the target language.

Natural Language Inference (NLI) [1] has emerged as one of the main tasks
to evaluate NLP systems for sentence understanding. To address this task in
cross-lingual scenarios, Adversarial Training [2] has been successfully employed
using multilingual word embeddings [2, 3]. The goal of Adversarial Training is
to obtain representations of the input that are useful to address a specific task,
while being agnostic to the input language. The model can then be employed
to address the task regardless of the input language. One key advantage of
Adversarial Training over other proposed approaches [3] is that we obtain a
single encoder that can be employed across different languages.

With the advent of multilingual language models [4], new state-of-the-art
results were obtained across different downstream tasks and languages [5]. In
this study, we observe that when employing recent multilingual language models
Adversarial Training is unable to improve the performance of the model in cross-
lingual scenarios, when compared to the baseline Direct Transfer procedure. We
investigate this phenomenon and found that the auxiliary task proposed for
models employing Adversarial Training with multilingual word embeddings is
unsuited when the model employs multilingual language models. We propose
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more challenging auxiliary tasks for Adversarial Training, tailored to improve
language adaptation for current state-of-the-art systems.

2 Related Work

Recent deep learning models proposed to address NLP tasks in cross-lingual
settings rely on the existence of multilingual word embeddings (MWEs) [6] and,
more recently, on multilingual language models [4]. In fact, pre-trained language
models lead to impressive improvements on several downstream tasks. Devlin et
al. [4] introduce the Masked Language Modeling (MLM) task and, by employing
a neural network based on the Transformer architecture to predict the masked
tokens from large-scale text resources (in an unsupervised setting), propose the
BERT model (widely used by the community as a state-of-the-art pretrained
language model).

The goal of the NLI task is to determine whether the meaning of the text
fragment “Hypothesis” (H) is in an entailment, contradiction or neither (neu-
tral) relation to the text fragment “Text” (T') [1]. To address NLI in a cross-
lingual setting, unsupervised language adaptation (ULA) techniques have been
explored [7, 3]. One the largest available resources, with data annotated in
15 languages, to study language adaptation approaches for the NLI task is the
Cross-Lingual Natural Language Inference corpus (XNLI) [7].

ULA methods aim to leverage the knowledge learned while performing super-
vised learning on a source language to a given target language, without requiring
annotated data in the target language. The most common approaches are Adver-
sarial Training [2], Encoder Alignment [7], and Shared-Private architectures [8].

3 Adversarial Training for Cross-lingual NLI

In this work, we employ Adversarial Training, a promising method for ULA
across different languages and tasks [2, 3]. Given the advantages of the method (a
single encoder for many languages and no requirements on the availability of par-
allel sentences) compared to other proposed approaches (Encoder Alignment and
Shared-Private), Adversarial Training can have a high impact in less-resourced
languages. We illustrate its use, benefits and limitations through experiments
conducted on the XNLI corpus.

A neural network employing Adversarial Training [2] is composed of three
main components: a feature extractor F that maps an input sequence z to a
shared feature space, a task classifier P that predicts the label for x given the
feature representation F(x), and a language discriminator Q that given F(x)
predicts whether x is from the source or from the target language. The goal
of Adversarial Training is to minimize both the task classifier and adversarial
component losses: £ = Ligsk + A Lagw , where Ly, is the cross-entropy loss
between predicted labels and ground-truth, £,4, is the Wasserstein distance [9]
between the feature distributions of input sequences in the source and target

270



ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

[ Embeddings | Method [ EN | AR DE ZH
MWE Direct Transfer 68.01 i401.9568 i41i45?6 jzul.lllg,
+ 0.37 . : .

45.61 46.24 47.90
+0.38 | £0.80 | £0.31

i 57.11 | 62.67 | 63.16
mBERT Direct Transfer TLI4 668 | +0.10 | + 1.25

+0.32 57.44 61.57 62.99
+1.14 | £0.52 | £+ 0.66

Adversarial Training

Adversarial Training

Table 1: Accuracy scores in percentage for XNLI experiments

languages, and A is a hyper-parameter that weights the importance of the ad-
versarial component.

3.1 Experimental setup

The source language used in our experiments is English (EN). To study the
impact of Adversarial Training across different language families, the following
target languages are analyzed: Arabic (AR), German (DE), and Chinese (ZH).

To encode each input sequence, we employ (a) conventional MWEs and (b)
a state-of-the-art multilingual language model. For (a), each token is initialized
with pre-trained 300-dimensional fastText word embeddings'. In the F compo-
nent we use a BILSTM with 128 hidden units. For optimization, we use Adam
with default parameters. For (b), the 7 component employs mBERT [4]. We
follow the implementation details suggested by Devlin et al. [4]. For optimiza-
tion, we use Adam but, as suggested by Devlin et al. [4], with a learning rate of
2e—5. In both approaches, P and Q are composed of a single-layer feed-forward
neural network with a 128 units, using a dropout rate of 0.2. To encode the
relation between T' and H, we follow the Siamese-Encoder architecture [10]: two
F layers are employed (to encode T and H) and then merged with the widely
used aggregation function (T, H,|T — H|,T = H).

3.2 Results

The results obtained from our experiments with XNLI corpus are reported in
Table 1. Given that the labels are balanced, we use accuracy as evaluation
metric. We report average scores of 3 runs with different random seeds. The
“Embeddings” column, divides the results for each of the encoding techniques
(MWE and mBERT). For the baseline “Direct Transfer” approach, we evaluate
the model directly on the target language after supervised training on the source
language. The “EN” column presents the scores obtained after supervised train-
ing on the source language. Columns “AR”, “DE”, and “ZH” correspond to the
scores obtained in each of these target languages.

With MWESs, Adversarial Training improves the accuracy scores for all tar-
get languages (+5.41% on average) compared to the baseline (differences are

Thttps://fasttext.cc/docs/en/aligned-vectors.html
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statistically significant with p < 0.02). These results are aligned with prior
work [3], which concludes that Adversarial Training coupled with MWEs is a
robust technique for ULA in different scenarios. However, with mBERT, Adver-
sarial Training cannot improve the scores on the target languages, performing
below Direct Transfer in two of them (differences are not statistically signifi-
cant). Compared to MWEs, mBERT improves by +3.13% the score obtained
on the source language, and the drop between the source and target languages
(through Direct Transfer) is much smaller, showing that multilingual language
models are a promising approach for cross-lingual scenarios.

3.3 Analysis

The main insights taken from our experimental results are: (a) Adversarial
Training coupled with MWEs improves the scores across different target lan-
guages, but with mBERT it cannot improve over Direct Transfer; and (b)
mBERT closes the gap between source and target languages, suggesting that
mBERT provides strong cross-lingual baseline scores. Therefore, we conclude
that the sentence-level representations provided by mBERT are closer in the
feature space across different languages compared to MWEs.

To validate our hypothesis, 500 sentences were sampled from the EN and
DE validation sets. Following Chen et al. [2], we employ t-SNE with Principal
Component Analysis (PCA) to reduce the representation of the input sequences
into a two dimensional feature space. To determine the distance between the set
of input sequences in both languages, we use the Averaged Hausdorff Distance
(AHD) [11]. An AHD distance of zero means that the set of points in both
languages coincide, while higher values indicate that the distance between the
two sets of points is greater. With MWEs, we obtain an AHD of 39.96 after
supervised training on the source language. The AHD drops to 12.35 after Ad-
versarial Training. Consequently, we conclude that Adversarial Training makes
the F layer more agnostic to the input language. With mBERT, the observed
drop in AHD is significantly lower in magnitude, from 7.95 after supervised
training to 6.59 after Adversarial Training. This shows that the representations
provided by mBERT are closer to language-agnostic, from which only marginal
improvements can be obtained with Adversarial Training.

Due to the strong cross-lingual properties of mBERT, the auxiliary task ob-
jective employed in Adversarial Training is already close to optimal from the
outset. For this reason, Adversarial Training cannot provide further improve-
ments in cross-lingual settings. To counter this, we propose alternative auxiliary
tasks designed to improve the transfer of knowledge across languages.

4 Robust Auxiliary Tasks for Language Adaptation

Adversarial Training is a promising approach for ULA; however, when employed
with recent multilingual language models, alternative formulations for the auxil-
iary task are required. Sticking with the same general intuition employed by Ad-
versarial Training for ULA, we propose that the F layer should be encouraged to
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produce representations from which a decoder-based model could be able to gen-
erate the original input sequence (similar to the auto-encoder formulation [12]).
Compared to the original language discrimination task, based on which the F
layer might only be capturing salient properties of the input sequence, we be-
lieve that this formulation will require the F layer to capture more information
regarding the input sequences (i.e., the generation of valid sentences in a specific
language requires more knowledge than language discrimination). Alternatively,
following recent proposals in language modeling, we propose to employ the MLM
objective [4] as the decoder objective, instead of predicting the complete input
sequence. This is in line with prior work on monolingual settings [13], which
concluded that performing fine-tuning for downstream tasks including language
modeling as an auxiliary objective can accelerate convergence and improve the
generalization capability of the learned model. However, additional challenges
are expected in multilingual scenarios. Fine-tuning a pre-trained language model
based on labeled data in the source language updates the learning weights of the
model specifically for the source language. Given that input sequences in the
target language are not available during fine-tuning, it is reasonable to expect
that the representations for the target language will become outdated and not
specifically tuned to address the task at hand. To employ the proposed decoder-
based procedure in a cross-lingual setting (which was not considered by Radford
et al. [13]), we propose that the auxiliary MLM objective is optimized providing
input sequences in both source and target languages. We hypothesize that the
task-specific fine-tuning will impact the representations in both languages, by
encouraging representations for the source and target languages to be jointly
updated based on the MLM objective.

Based on the current formulation, we cannot ensure that the F layer ob-
tains language-specific or language-agnostic representations. For instance, if the
neural network is large enough, it could be divided into two partitions: one
specialized in the source language (tuned for the target task and for the MLM
on the source language), the other in the target language (only tuned for the
MLM objective in the target language). If this occurs, then the representations
in the target language will not be aligned with the fine-tuned representations
on the source language. To counter this, we propose to combine the losses of
both adversarial and MLM tasks: L,q, and L,,;,,. The intuition is to encour-
age the F layer to obtain sentence-level representations that are agnostic to the
input language (as in the conventional Adversarial Training) but that can also
provide enough information to retain the language modeling capabilities in both
languages, which are critical to encode the representations for the target task.
The final loss would be calculated as follows: £ = Ligsk + A Lado + 8 Lnim. In
this formulation, L,,;,, is the unsupervised MLM objective for input sequences
in both source and target languages, and A and 8 are weights that control the
interaction of the loss terms.
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5 Conclusions

Adversarial Training is an ULA method that has been successfully employed with
multilingual word embeddings for different NLP tasks, including the challenging
NLI task. Our empirical results show that with state-of-the-art multilingual lan-
guage models, Adversarial Training cannot improve the scores obtained with the
baseline Direct Transfer approach. A detailed analysis shows that the conven-
tional language discrimination task proposed in Adversarial Training is trivially
solved when we employ recent multilingual language models.

To improve the cross-lingual transfer of state-of-the-art language models, we
propose alternative formulations for the adversarial component, tailored to take
advantage of recent advancements in language modeling. We believe that our
analysis and proposals can pave the way to more robust cross-lingual models.
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