
Constraint optimization for Echo State
Networks applied to satellite image forecasting

Yannic Lieder and Jochen J. Steil

Technische Universität Braunschweig - Institut für Robotik und Prozessinformatik

Abstract. The paper proposes to deal with noisy, sparse or short training
data sequences by adding domain knowledge to the learning process of
Echo State Networks (ESNs). Known constraints like monotony in the
output, periodicity or bounds on output values are encoded as inequality
constraints on the output weights to be learned. Exploiting that the output
of an ESN is linear in the weights, Quadratic Programming is then used
to obtain and optimize these. The method is applied to the prediction of
pixel values from monthly, noisy satellite images of a short history of five
years, thereby enabling the cleaning of images from clouds or snow.

1 Introduction

When data is sparse or highly noisy, the embedding of prior domain knowledge
into neural networks is of crucial importance to provide the necessary machine
learning bias for successful generalization. The traditional way to do this is
extensive preprocessing or data augmentation before learning, which lacks both
transparency and flexibility and requires hard decisions beforehand. We here
follow a different approach to rather use dedicated learning methods, which
are being developed particularly for technical domains [1]. Examples are the
embedding of e.g. monotony constraints [2] or gain constraints [3] in feedforward
neural networks. A wider range of constraints is supported by regression methods
in support vector machines [4]. For ESNs, prior knowledge has been used to
determine the reservoir topology [5].

1

uNu

y1

yNy

Win

W

Wout

u1

Fig. 1: Echo State Network

In [6], we introduced the Con-
strained Extreme Learning Machine
(CELM) to embed and verify a wide
range of constraints in order to in-
sert prior domain knowledge in the
learning process of a feedforward
network. The CELM exploits that
its output is linear in the learning
parameter and thus allows for linear
inequality constraints on the output.
Weights then are found through Quadratic Programming (QP).

The current paper introduces in the same spirit QP for Echo State Networks
and encodes constraints on the temporal development of the outputs. In an
application to real world satellite data, it shows that thereby forecasting of
pixels under highly noisy conditions and very short history is possible and can
for instance be used for removing clouds or filling gaps in the image.

299

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

2 Constraint Optimization for Echo State Networks

Fig. 1 shows the standard ESN architecture with an input layer, inner reservoir
layer and output weights Wout, which are the learning parameters, while the
inputs weights Win and reservoir weights W are randomly drawn from a uniform
distribution and fixed [7, 8]. Introducing bias neurons and a leak rate α, the
update equation in discrete time can be written as

x(t) = (1−α)x(t− 1)︸ ︷︷ ︸
previous reservoir state

+ ασ

(
Win

[
1

u(t)

]
+ Wx(t− 1)

)
︸ ︷︷ ︸

reservoir update

, y(t) = Wout

[
1

x(t)

]
,

where the linear dependency of the output y on the output weights Wout is
apparent. Training of the network proceeds by feeding it with j input sequences
uj(t), t= 1..Kj +Tj , using the first Kj steps of each sequence as a washout to
settle the internal states of the reservoir; by recording of the respective reservoir
states xj(t), t=Kj+1 ..Kj+Tj ; by stacking them for all j, t as rows in a respective
regression matrix towards the target outputs yj,target(t); and finally by solving
for Wout through standard ridge regression [7, 6, 8] minimizing

εRMSE =
∑
j

1

Ny

Ny∑
i=1

1

Tj

T∑
t=1

(
yji (t)− yj,targeti (t)

)2
,

where Ny ist the dimension of the output vector y.

Constraint optimization: Dropping the sequence index j for clarity, consider
now a constraint L(t) at some time step t as a weighted linear combination of i
previous outputs yi(t− h), h = 0...H with weights γih and constant scalar c:

L(t) =

Ny∑
i=1

H∑
h=0

γih yi(t− h)− c. (1)

By substituting the linear output equation yi(t−h) = Woutxi(t−h) in L(t) we
obtain constraints that are linear in the learning parameters Wout. Such linear
combinations include standard difference quotients to approximate derivatives
and can express a wide range of constraints, e.g. on the monotony of the output
function, bounds on the output values, curvature, periodicity, or to prescribe a
dedicated known output value at a particular point in time. We formulate the
learning problem under constraints as the Quadratic Program

min
Wout

εRMSE such that L(t) ≤ 0, (2)

which constitutes the constraint ESN (CESN). Equality constraints, as well as
bounds on absolute values can be expressed through two such inequalities. We
then use a standard QP solver (Gurobi, https://www.gurobi.com) via Python
to obtain the respective output weights Wout.

300

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

0 200 400 600 800 1000

�1

�0.5

0

0.5

1

t

si
n
e

w
av

e
(

)

0 200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

fr
eq

u
en

cy
(

)

0 200 400 600 800 1000

�1

�0.5

0

0.5

1

t

si
n
e

w
av

e
(

)

0 200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

fr
eq

u
en

cy
(

)

…

|DQ1(y(t))|  1.1DQmax
1

|DQ2(y(t))|  1.1DQmax
2

|DQ3(y(t))|  1.5DQmax
3

<latexit sha1_base64="KpjkBLTKPzuHOEqKHLypvbeDKV4=">AAACYXicbZFLTwIxFIU74xtFR126aSQa2JAZ1OjSqAuXmsgjYZB0ygUaOo+0dwxk5E+6c+PGP2IHWShwkyYn5343tz0NEik0uu6nZa+tb2xube8UdveK+wfO4VFDx6niUOexjFUrYBqkiKCOAiW0EgUsDCQ0g9F93m++gdIijl5wkkAnZINI9AVnaKyuM35/eO565UkZK5V3eu5LoF7Vy73XzEcYYxay8XTq+4UcrK0Aa6vAiwXwKvf+gV2n5FbdWdFl4c1Ficzrqet8+L2YpyFEyCXTuu25CXYyplBwCdOCn2pIGB+xAbSNjFgIupPNEprSM+P0aD9W5kRIZ+7fiYyFWk/CwJAhw6Fe7OXmql47xf5NJxNRkiJE/HdRP5UUY5rHTXtCAUc5MYJxJcxdKR8yxTiaTymYELzFJy+LRq3qXVRrz5el27t5HNvkhJySMvHINbklj+SJ1AknX9a6VbT2rW97x3bso1/UtuYzx+Rf2Sc/BNex7w==</latexit>

Fig. 2: Left: variable frequency sine wave. Right: constraints (see text.)

Synthetic example: We first demonstrate feasibility of the method and provide
an illustrative application to show how training with few data can be enhanced
through additional knowledge. The task is to predict the time-varying frequency

of a sinusoidal input sequence u(t) = sin
(∑t

i=1 y(i)
)

where data is created by

constructing y(i) = ytarget from a cubic spline using uniformly sampled points
in the range (5/1000, 5/10). Fig. 2 (left) shows a sample of the input u(t) and
respective time varying frequency y(t). To make the task harder and pronounce
the necessity of reservoir memory, the target is to predict the frequency 50 time
steps in the past, i.e. ytarget(t) = y(t − 50). The constraints (Fig. 2, right)
are derived from the known target signal as upper bounds on the first (DQ1),
second (DQ2) and third (DQ3) order difference quotients (taken backward in
time), and DQmax

i is the maximum over the input signal.
The training is visualized in Fig. 3. After a first 100 steps of washout, the

networks are trained on the next 900 steps while providing the target output
ytarget(t). Note that small frequencies are hardly present in the training and
that 900 time steps for training such memory task is not much. The constraints
are applied to the first 4000 time steps excluding the transient washout, whereas
they can easily be used also at time steps 1000-4000 where output targets are
missing.

We benchmark the constraint optimization approach against two baselines:
the same ESN with or without additional post-processing, but without con-

ytarget y (ESN) y (ESN + postproc.) y (CESN)

training

constraints

0 500 1000 1500 2000

0

0.2

0.4

t0

y

constraints

2000 2500 3000 3500 4000

0

0.2

0.4

y

validation test

4000 4500 5000 5500 6000

0

0.25

0.5

t

y

ytarget y (ESN) y (ESN + postproc.) y (CESN)

training

constraints

0 500 1000 1500 2000

0

0.2

0.4

t0

y

constraints

2000 2500 3000 3500 4000

0

0.2

0.4

y

validation test

4000 4500 5000 5500 6000

0

0.25

0.5

t

y

ytarget y (ESN) y (ESN + postproc.) y (CESN)

training

constraints

0 500 1000 1500 2000

0

0.2

0.4

t0

y

constraints

2000 2500 3000 3500 4000

0

0.2

0.4

y

validation test

4000 4500 5000 5500 6000

0

0.25

0.5

t

y

…

Fig. 3: Washout: 1-100; Training of outputs+constraints 101-1000, constraints
only 1000-4000; validation: 4001-5000 (not shown), test: 5001-6000

301

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

straints. Note that the post-processing is another rather heuristic form of using
the domain knowledge to improve performance. It is performed through solving
another QP to modify the output yESN (t) ex-post so that all constraints are
satisfied and deviate as little as possible from the original ESN output (in sense
of the RMSE). The experiment including hyperparameter optimization was re-
peated for 30 different network initializations. The best and mean results of each
approach together with the found hyperparameters are listed in the table:

Approach
Abs. Test Error

(
·10−3

)
Rel. Test Error

Best Mean Best Mean

ESN 31.7 42.1± 6.8 21.9% 29.1%
ESN + post. 27.0 37.4± 4.5 18.7% 25.9%
CESN 11.2 16.5± 7.2 7.7% 11.4%

Hyperparameter Values (Occurrences out of 30 reps)

Leaking rate 0.1, 0.2(17), 0.3(13), 0.7, 0.9
Spectral radius 0.1, 0.2(26), 0.4(3), 0.6, 0.7(1), 0.99
Input scaling 0.01, 0.05, 0.1, 0.5(9), 1(18), 2(2), 4(1)
Regularization 10−8(27), 10−5(2), 10−4(1), 10−3, 1
Reservoir size 100(6), 500(24)

This experiment clearly shows that the inclusion of constraints can substan-
tially improve the performance of the network, which here can simply be mea-
sured wrt. the known ground truth output. Fig. 3 additionally visualizes that
in particular the low frequencies that are hardly present in the input provide
a challenge, but can reliably be detected if constraints are added. Note that
also postprocessing of a standard ESN with the same constraint improves per-
formance, however performs still worse than our proposed approach. Control
experiments further showed that increasing the training data size, e.g. training
of full 4000 output values allows to learn the task also for the baseline ESN.

3 Application to satellite image data forecasting

13
71

13
70

13
69

13
68

13
67

13
66

1081 1082

1083 1084 1085 1086

1087 1088

1089

Fig. 4: Basemap in 4096 x 4096 pixel
tiles. Used tiles in red.

In this section, we apply the CESN to
processing pixel time series of satel-
lite images which cover specific ge-
ographic area of the Harz highland
region in northern Germany, specifi-
cally its woodland. In our research
context, a project towards multi-scale
modeling of extreme water and flood-
ing events, it is interesting to assess
the “greenishness” of the forests as an
indicator of dryness, which in turn de-
termines the wood’s capability to re-
tain heavy rains. Images were pro-
vided by Planet Labs Inc.1 in form of monthly aggregated so-called Basemaps,
which are preprocessed images of the region and are available for all months
starting from January 2016. Ending with December 2020, we obtain a relatively
short 60-months image time series. Since we are interested in the appearance
of the real dyes of the foliage and plants, we consider both clouds and snow as
noise. Another noise factor is foggy and dull weather, which can add a bluish
tint to the image as shown in the examples in Fig. 5.

1We thank Planet Labs Inc. for providing the images in this research context free of charge.
Basemaps are a commercial product of Planet Labs Inc.

302

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Fig. 5: Noise caused by clouds,
snow, fog, processing artifacts.

Learning Task: We train and apply a
CESN pixel-wise, that is on many inde-
pendent time series of length 60 of sin-
gle pixels, which each are defined by the
three color channels yR red, yG green
and blue yB . The task is to predict
the pixel of the next month’s Basemap.
Constraints: We know from the domain
that change in “greenishness” is limited
from one month to the other and fur-
thermore we assessed that green pixels in
our images (as opposed to snow or arti-
facts) are located in a specific cube in the
RGB-space. This knowledge translates to the following constraints: yR(t) ≤
0.5, yG(t) ≤ 0.5, yB(t) ≤ 0.35, y∗(t)− y∗(t− 1) ≤ 0.05, ∗ ∈ R,G,B.

25 50 75 10
0
15

0
20

0
50

0
10

00

0.0

0.05

0.10

0.15

0.20

Training Dataset Size

R
M

S
E

Training Tile

Test Tiles

ESN

CESN

Fig. 6: Error vs trainig set size.

Experiment: We compare training
dataset sizes of 25, 50, 75, 100, 150, 200
pixel sequences, which are uniformly sam-
pled from one of the five tiles shown in
Fig. 4. We evaluate the trained model
on the other four tiles. The 60-months
time series of a pixel is trained, where the
first 24 months are used for washout start-
ing from initial zero reservoir state. The
months 25 to 59 are trained. While the
training dataset size that provides target
outputs is variable, we select always in to-
tal 1000 sequences including those with
targets to embed the constraints. Hy-
perparameters are determined in advance
and the ESN is initialized with regular-
ization: 10−8, reservoir size 750, spectral
radius: 0.99, leaking rate: 1.0 and input scaling: 0.1.
Results: Fig. 6 shows quantitative results for the CESN for Dec. 2020 against
the baseline of a standard ESN as test performance on sequences of other tiles
dependent on the training set size. Whereas Fig. 7 visualizes the result qual-
itatively in the spatial Basemap image. The standard ESN predicts a snowy
image from the earlier years, similar to the rectangular area, and “covers” other
parts and tiles with snow, which is visualized through color coding the RMSE
deviation from the provided target image. This is reasonable for a plainly data
driven method, as it sticks to the provided training data. The CESN, however,
is able to “remove” the snow from the rectangular “whitish” image part and
rather extrapolate constraint-based some degree of beeing “greenish”. In our
use case this is desired as we are interested in the dyes of the plants below the
snow in training, which is driven by the domain knowledge. This consideration

303

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

highlights that evaluation of the methods can be non trivial in practice and can
not be simply based on error calculations alone. It has to also consider also the
domain knowledge and task-dependency.

Target ESN CESN RMSE (ESN) RMSE (CESN)

Fig. 7: “Cleaning” a winterly image from snow by adding constraints.

4 Conclusion

In this paper, we have shown how to use Quadratic Programming to enrich the
training process of an ESN with constraints that reflect specific knowledge about
the problem domain. It has been shown that lack of training data or very noisy
training can be mediated by such constraints, while a real application on satellite
images shows how this can be used for image cleaning. The method uses standard
QP solvers, but while these have made enormous progress in recent years, our
approach can easily produce very large amounts of pointwise constraints that
constitute a significant computational burden, which scales but also varies with
the efficiency of the QP solver and the structure of the problem. While in
the current work we have presented only constraints in the time-domain of the
output. In future work, we would like to extend the approach to include spatial
input and spatial constraints amoung input variables as well.

References

[1] F. Reinhart, K. Neumann, W. Aswolinskiy, J. J. Steil, and B. Hammer. Maschinelles
lernen in technischen systemen. In Steigerung der Intelligenz mechatronischer Systeme,
pages 73–118. Springer, 2018.

[2] Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks.
IEEE Transactions on Neural Networks, 21(6):906–917, 2010.

[3] Eric Hartman. Training feedforward neural networks with gain constraints. Neural Com-
putation, 12(4):811–829, 2000.

[4] Fabien Lauer and Gérard Bloch. Incorporating prior knowledge in support vector regres-
sion. Machine Learning, 70(1):89–118, 2008.

[5] P. Yu, L. Miao, and G. Jia. Clustered complex echo state networks for traffic forecasting
with prior knowledge. In Int. Conf. Instrumentation and Measurement Technology, pages
1–5, 2011.

[6] K. Neumann, M. Rolf, and J.J. Steil. Reliable integration of continuous constraints into ex-
treme learning machines. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems,
21:35–50, 2013.

[7] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science, 304(5667):78–80, 2004.

[8] Jochen J Steil. Online reservoir adaptation by intrinsic plasticity for backpropagation–
decorrelation and echo state learning. Neural networks, 20(3):353–364, 2007.

304

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

