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Abstract. We propose an improvement to t-SNE which allows auto-
mated specification of its perplexity parameter using topological infor-
mation about a data manifold revealed through neural prototype-based
learning. This information is contained in the CONN (CONNectivity)
similarity of neural prototypes, which expresses the strength (weakness)
of topological connectivity at various points within the manifold. Exper-
iments show that improvements, collectively called CONNt-SNE, are
capable of producing meaningful and trustworthy low-dimensional embed-
dings without the need to heuristically optimize over (i.e., grid search)
t-SNE’s perplexity space. Data-driven perplexity determination improves
our confidence that any structure appearing in the embeddings is valid
and not merely an artifact of spurious parameterization.

1 Background

t-SNE [1] has attracted wide attention both within and outside the machine
learning community as a tool for producing low-dimensional non-linear embed-
dings T = {ts}

N
s=1 ∈ R

d′

of high-dimensional point clouds X = {xs}
N
s=1 ∈ R

d,
where d′ << d, for exploratory (visual) data analysis. Typically d′ ∈ {2, 3}. The
appetite for such analysis across disciplines is strong, but many questions have
been raised about what, exactly, can (should) be inferred from a t-SNE embed-
ding. t-SNE’s introduction subtly stresses its distinction as a technique only for
visualization (vs. feature engineering/extraction), yet its embeddings are often
clustered either informally (via visual assessment) or formally (applying a clus-
tering algorithm to T ). Some [2] have noticed relative deficiencies in t-SNE’s
ability to faithfully indicate separation in complex manifolds. [3] offers a list of
various misinterpretations that can be made from a t-SNE embedding due to
its unfaithful representation of cluster sizes, shapes, densities, compactness and
separability. Most of these issues arise because t-SNE is designed to preserve con-
ditional probabilities between points instead of distance. We believe these issues
are not severe impediments to successful cluster discovery from low-d represen-
tations; indeed, over the last three decades the lattice representations of data
learned by Self-Organizing Maps [4] have produced many successful clusterings
without explicit preservation of, e.g. scatter, between the high- and low-d spaces.
However, [3] does raise one issue we feel fundamentally impacts the fidelity of a
t-SNE representation: that of selecting its main “perplexity” parameter, which
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we abbreviate px. px indirectly controls the number of neighbor similarities
that t-SNE attempts to preserve. An example taken from [3] of the various t-
SNE embeddings which can arise from different px specifications is given below.

Here, the original data (left-most panel) is very simple–two dimensional with
two well-defined clusters–yet inspection of the embeddings resulting from some
perplexity values (2, 5, 100) would yield a different conclusion. [1] suggests that
t-SNE is relatively insensitive to different values but in practice an optimal value
is obviously data-dependent and should be data-driven. CONNt-SNE provides
a mechanism for such, using information freely available and commonly invoked
during prototype-based clustering.

1.1 The t-SNE Algorithm

The t-SNE algorithm begins by defining Gaussian similarities between two points
in X ∈ R

d as

pij =
pj|i + pi|j

2N
, pj|i =

exp(−||xi − xj ||
2/2σ2

i )
∑

k 6=i

exp(−||xk − xi||2/2σ2
i )

(1)

where p·|i is the conditional distribution of all other xj given xi and, by conven-
tion, pi|i = 0. We let P = {pij} be the N × N matrix of such (symmetrized)
similarities and denote its i-th row by Pi. Each Gaussian bandwidth σi is con-
trolled by the (global) perplexity parameter px, set (through iterative search)
such that following relationship holds:

px = 2H(Pi), H(Pi) = −
∑

j

pj|i log2(pj|i) (2)

Pointwise similarities inR
d′

are derived from the pdf of the Student’s t-distribution

with one degree of freedom: qij =
(1+||ti−tj ||

2)−1

∑

k 6=l

(1+||tk−tl||2)−1 , where again we let Q =

{qij}. Coordinates ti are determined through minimization of the Kullback-
Leibler divergence as cost, C = KL(P ||Q).

1.2 CONN Similarity

CONNt-SNE provides a framework for embedding the prototypes W = {wi}
M
i=1 ∈

R
d, M << N , of a vector quantizer (VQ) trained on data X . While the proto-

types of any VQ would suffice for this purpose we prefer neural variants such as
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the SOM and Neural Gas (NG, [5]) as the iterative stages of competition and co-
operation during training result in better prototype placement in the data cloud
[6]. Previous work [7] utilized t-SNE as a means to visualize Neural Gas proto-
types but, contrary to this work, did not explore any ways by which t-SNE could
be influenced by the VQ. The CONN similarity [8] between trained prototypes
wi and wj , CONNij = CADJij + CADJji, can be calculated from a recall of
the entire dataset, where CADJij =

∑

s I(BMU1(xs) = i ∧ BMU2(xs) = j),
BMU{1, 2} are the index of the 1st and 2nd Best Matching Units (prototypes)
and I() is the indicator function. CADJij (the Cumulative ADJacency of i and
j) reports the number of data vectors observed in the second-order Voronoi cell
Vij generated by W , and CONN is its symmetrized version. CONN is thus a
weighted version of the Masked Delaunay Triangulation [9] whose entries reflect
local data densities within the manifold.

2 CONNt-SNE

CONNt-SNE methodology arises from two key modifications to the original t-
SNE algorithm. The first of these permits a varying perplexity pxi when setting
each conditional distribution p·|i. We now haveM different (local) perplexities to
specify but CONN provides a data-driven way of determining these parameters
as the number of CONN neighbors of prototype i:

pxi = max





∑

j

I(CONNij > 0), 5



 .

We retained the lower bound pxi ≥ 5 as suggested in [1] as our experiments
show t-SNE can be unstable at low perplexity values. With pxi intelligently
and automatically specified, the same procedure of (2) sets each local σi (and,
consequently, Pi). We denote by Pvar the matrix of prototype similarities defined
using CONN-derived variable perplexity values pxi.

The second modification to t-SNE appends a term to its cost function to
allow the CONN similarities to more directly influence the t-SNE embedding,
which we do in an additive manner, yielding CONNt-SNE’s cost function:

C∗ = KL(Pvar ||Q) +KL(PCONN ||Q). (3)

PCONN = CONN , but normalized to have (1) unity row sums and then (2)
unity grand sum, as required of a t-SNE similarity. This new cost term imparts
information about the local data densities and is unique to vector quantizers.
The additional term in CONNt-SNE’s cost does increase runtimes (≈ 50% longer
than t-SNE for the experiments of section 3). We argue this is a minor issue as
1) embedding prototypes (vs. data X) is already orders of magnitude faster due
to drastically decreased sample size and 2) CONN is very sparse (most CONNij

values = 0), which could be exploited to expedite the additional gradient calcu-
lations required during minimization of (3).
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3 Data Experiments

To demonstrate the effectiveness of CONNt-SNE we compare its two-dimensional
embeddings to those of t-SNE for two real datasets:

• MNIST: 28x28 pixel grayscale images of handwritten digits 0-9. N=70,000;
d = 784; # classes = 10. 2,000 NG prototypes trained for embedding.

• Flow18: Flow cytometry measurements of human peripheral blood mononu-
clear cells labeled by phenotype, subsampled as in [10]. N = 946,915; d =
11; # classes = 12. 1,225 NG prototypes trained for embedding.

We have omitted experiments on simple synthetic data, which elucidated few
differences. The top panel of Figure 1 displays the resulting embeddings using
a Principal Components (PCA) initialization and px = 30 for t-SNE, which is a
widely used default. Points are colored by class (prototypes inherit their class
label by plurality vote of the labeled data mapped to them). Both methods
produced well organized visual groupings of known classes, with CONNt-SNE
exhibiting slightly better cluster retention and separation (note the axis scales–
CONNt-SNE repeatedly utilizes larger areas of the t-SNE plane). For MNIST,
CONNt-SNE delineates digits 4 and 9 more cleanly and shows less confusion
between 3 and 5. For Flow18, CONNt-SNE has more meaningfully separated
the light blue B-cells from salmon-colored Lin- cells; Lin- stem cells differentiate
to form B-cells, so they are biologically related but distinct. CONNt-SNE has
also retained a visual “bridge” between CD14 expressed monocytes (red and mint
green clusters); as the mint green CD14var monocytes comprise mixed marker
expression (CD14+/-), we believe this is a more faithful representation of the
underlying data relationships. From these observations we conclude CONNt-
SNE more sensitive to the subtleties of complex data.

Beyond visual inspection we have also attempted a quantitative assessment
of the embedding by measuring various cluster criteria on the prototype clusters
in the embedded space (not in R

d). Internal measures (Davies-Bouldin Index,
Generalized Dunn Index, SILhouette Index) compare a known partition to ra-
tios of within-cluster scatter and between-cluster separation to suggest how well
point placement agrees with the partition. External measures (Adjusted Rand
Index, JACcard Similarity, Normalized Mutual Information) report the con-
cordance of truth and predicted labels. For the latter, we produced four different
clusterings of each embedding using Hierarchical Agglomerative Clustering (com-
plete, average, and single linkage) and k-means. The true # of clusters was used
to guide dendrogram cutting (for HAC) and centroid specification (k-means).

As layout initialization affects t-SNE’s quality we have repeated these mea-
surements for 11 different t-SNE initializations (PCA + 10 randomly seeded) for
each dataset and method. The boxplots in the bottom panel of Figure 1 compare
summary statistics of CONNt-SNE’s cluster criteria to t-SNE with perplexities
∈ {10, 30, 50} (the general range suggested in [1]). For all criteria a higher value
is preferable except DBI where a lower value indicates better performance. Ac-
cording to almost all criteria summarized in the boxplots, CONNt-SNE’s median
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performance is at least as good as the best-performing t-SNE parameterization,
mimicking px = 30 for MNIST and px = 10 for Flow18 (notable exceptions are
the GDI and SIL indexes for Flow18).

4 Conclusions and Future Work

Prototype representations of data simultaneously reduce sample size and boost
signal-to-noise ratios. This not only alleviates the computational burden of
applying t-SNE directly to data, but also results in higher
quality embeddings, as is visible when comparing the well
separated structure of Figure 1 to a less separated, previously
published t-SNE embedding of the entire Flow18 dataset from
[10], inset right. Further, our data experiments give confi-
dence that CONNt-SNE’s automatic parameterization pro-
duces embeddings which faithfully and reliably represent cluster structure as
well as the best parameterized t-SNE, without the need to heuristically grid
search for (visually subjective) optimality. CONNt-SNE’s ability to recognize
and respond to structural subtleties in real data facilitates more meaningful in-
ference from its embeddings. As CONNt-SNE is new we have many ideas for
its further use, including extensions of this framework to other dimensionality
reduction techniques and sensible methods to harness the VQ mapping to permit
embeddings of new data points without further t-SNE training.
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Fig. 1: Top Panel: Embeddings of the learned Neural Gas prototypes of the
MNIST and Flow18 datasets by CONNt-SNE and standard t-SNE. Bottom

Panel: Summary statistics of the internal (top two rows) and external (bottom
two rows) cluster validity measures, as described in the text.
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