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Abstract. Explanations of neural networks predictions are a necessity for
deploying neural networks in safety critical domains. Several methods were
developed which identify most relevant input features, such as sensitivity
analysis and layer-wise relevance propagation (LRP). It has been shown
that the noise in the explanations from the sensitivity analysis can be
reduced by averaging over noisy input images, a method referred to as
SmoothGrad. We investigate the application of the same principle to
LRP and find that it smooths the resulting relevance function leading
to improved explanations. Moreover, it can be applied for restoring the
correct label of adversarial examples.

1 Introduction

Due to the wide-spread use of deep neural networks (DNNs), the question of
how decisions of these models can be interpreted gains rising importance. As
a consequence a multitude of methods have been developed in the recently
established field of explainable artificial intelligence. These methods range from
gradient based approaches [14] [T5l [T6], where the gradient of the prediction
in direction of the input is used to infer and highlight relevant areas - up to
concept based approaches like for example TCAV [5], where human concepts like
“stripes” for a zebra classification can be explicitly tested. One approach which
has established itself as a prominent method for the interpretability of DNNs
is layer-wise relevance propagation (LRP) [2, 8 B]. LRP leverages the graph
structure to extract meaningful explanations while at the same time fulfilling
desired properties gradient based approaches do not necessarily. One property for
example is the conservation property [9], which grants that each layer captures
the same amount of information. However, Montavon et al. [I0] noted that LRP
can lead to unsatisfactory results when applied to classifiers that are not optimally
trained or networks with specific structures (e.g., noisy first-layer filters or a large
stride parameter in the first convolution layer). They suggest to mitigate these
effects by replacing the explanation of a single input image by the explanations
of multiple slightly translated versions of it. Another strategy for making DNNs
more robust is by adding Gaussian noise to the training images [13| [I7]. This
approach was also shown to be effective for smoothing sensitivity maps, leading
to a method referred to as SmoothGrad [I5].
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We build on this idea by averaging over multiple stochastic variations of the
input, a procedure we refer to as SmoothLRP. Our contributions are twofold:

e We analyze the effect of using SmoothLRP as a wrapper over existing
approaches on the resulting heatmaps.

e We exploit the relevance variance to reverse adversarial examples back to
benign examples.

Because of the high level similarity to SmoothLRP, we compare SmoothLRP also
to LRP for Bayesian neural networks [4]. The idea for relevance quantification in
this setting is to take the single predictions of the Monte Carlo approximation
and calculate the LRP values for each of them. While the theoretical motivation
is fundamental different, their approach like ours incorporates stochasticity into
LRP. Bayesian-LRP (B-LRP) does this by taking model uncertainty into account,
while SmoothLRP rather models input uncertainty, as we will explain in more
detail.

2 SmoothLRP

First we give a brief description of the different LRP methods. In the following
let f be a trained DNN with L hidden layers. We denote by wl(l]) the weight
connecting the ith neuron of layer [ with the jth neuron of layer [ + 1 and with
agl) the activation of the ith neuron in layer [ after applying the non-linearity.
Then, LRP-0 [2] defines the relevance of the ith neuron in layer [ as

@
1 a; " Wy 5 1+1
RO=D i W
J A i,
where R;LH) = fj(x) is the output of the jth output neuron and REO) is the
relevance at the input level. However, it has been shown that this O-rule is
equivalent to gradient x input [I2] and gradients are known to be noisy [I5].
Therefore, the 0-rule was extended by the e-rule [2], where a small value is added
to the denominator in eq. to reduce the impact of low contributions. Another
well known extension is the y-rule where positive connections are enhanced [§]
by up-weighting positive weights by a factor +. Finally, LRP-composite (LRP-
CMP) [6] applies different LRP rules at different layers.

Our approach merges vanilla LRP-rules and the idea of smoothing image
explanations by averaging over stochastic input variations introduced by Smooth-
Grad. More formally, let  be an arbitrary input and £ = x + € the stochastic
input variation, with € ~ N (€;0, 02 - I') being a vector valued random variable
following an uncorrelated multivariate normal distribution. We are interested in
the expected relevance of & under A (e;0, o2 - I), that is

BrolT@) 00 RO+l

and refer to the method estimating it as SmoothLRP (cf. figure |3} Algorithm 1).
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3 Experiments

Throughout the experiments we used 50 noisy input versions with € ~ N(0,0.05%)
for estimating the relevance scores of SmoothLRP.

3.1 Investigating explainability properties

In this section we investigate whether SmoothLRP improves upon the vanilla
LRP rules. For this, we start by comparing the relevance heatmaps generated
by LRP-0, LRP-y, LRP-¢, LRP-CMP, and BLRP to those provided by their
smoothed counterparts on the often used “castle” image (cf. figure|l]). To gain a
direct comparison to the vanilla LRP, we extended the original code provided by
the heatmapping tutorial (heatmapping.org) and Bykov et al. [4], which both
use the pretrained VGG16 network provided by torchvision.

The resulting explanations are shown in figure [I} For all LRP methods we
see minor improvements for their smoothed version, which we briefly point out
in the following. For example, comparing the explanations provided by vanilla
LRP to those of SmoothLRP an increase of the areas of positive relevance scores
around the castle structure can be observed accompanied with an increase in the
interrelation between the pixels. This can best be seen for LRP-0 but also for
LRP-e. For LRP-¢ and LRP-CMP only the SmoothLRP versions classify the
complete lampshade in the top as explicitly uninformative for the prediction.
Also visible in all heatmaps is the reduction of noise, which can be seen by the
area under the castle. Interestingly, while BLRP incorporates model uncertainty
into their relevance scores, the 50% quantile of SmoothLRP shows slightly more
details for the demarcation of relevant and non-relevant areas which stronger
smoothing properties.

Since LRP-CMP is regarded as state of the art LRP method we investigated
heatmaps produced by it to their smoothed versions for the first 300 images of
the ImageNet validation data. In almost all cases we see the background noise
reduction effect (cf. figure . On images with a lot of features, SmoothLRP
helps to focus on the relevant parts and even sometimes shifts the whole focus
as can be seen in figure 2| D). To gain a better evaluation we conducted a small
survey in which 6 participants were asked to indicate which heatmap they found
to provide better explanations for the corresponding label. Images with bold
printed labels were the ones where the LRP heatmap was preferred by users.
We found a strong correlation between preferences for LRP and the amount of
details/edges shown by the heatmaps, which are often reduced by SmoothLRP.

3.2 Reversing adversarial examples

During our experiments, we found that adversarial examples (AEs) consistently
showed a higher prediction variance over the noisy input variations as well as a
higher variance in the relevance scores compared to their benign counterparts.
This motivated us to investigate whether AEs can automatically be detected and
reversed. The underlying hypothesis is that because AEs are created by adding a
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Fig. 1: Comparison of heatmaps: Red indicates positive and blue negative
relevance. Note that this picture has different non-relevant pattern like the street
lights and the signs. Original image of the castle (right).
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Fig. 2: Comparison of LRP-CMP and smoothLRP-CMP heatmaps:
Red indicates positive and blue negative relevance. Bold labels indicate that
users preferred heatmaps generated with LRP over SmoothLRP.

specific § to the image, the stochastic variations added to the input image might
reverse some of the well calibrated d-changes. Therefore, pixels with heavily
varying relevance scores might indicate the pixels relevant for the malicious class
label. This experiment was conducted for the VGG16 network trained on the
ImageNet data set provided by Tensorflow /Keras. For the relevance calculation
we used uniform LRP-¢ (with e = 1e—9) provided by the toolbox iNNvestigate [I].

We proceeded as described: (i) We applied the projected gradient decent
attack [7] implemented in Foolbox [11I] with perturbation strength 5 and 10
iterations to the first 300 images of the ImageNet validation set, out of which 253
turned to successful AEs, i.e. AEs leading to a misclassification. (ii) We did the
same for the 20 Foolbox images which were then used to calculate the pixel-wise
relevance variances over the 50 SmoothLRP scores for the benign images and
their corresponding AEs. For each image/AE we then estimated the mean of
these relevance variances and identified a mean based classification threshold for
distinguishing between benign and adversarial images. (iii) We calculated the
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Algorithm 1 SmoothLRP
input z original image, o2 variance of the added noise, M
number of stochastic input variations, D input dimension
form=1,...,M do
Sample €, ~ N(€;0, 0% - I)
Setz,, =z + €,
fori=1,..., D do
Calculate R\ (,,)
end for
RO (@n) = (R @n)}2,
end for
Relevance set = { R (z,,)}M_, o
Relevance: %I Z?"[:l RO (&,,)
output Relevance set, relevance

(c) Relevance variance (d) Reversed image

Fig. 3: Left: Pseudo code for the SmoothLRP algorithm. Right: Reversing
the label of an adversarial example. (a) Benign image and its (b) adversarial
version can be distinguished by their ¢) pixel-wise variances of the relevance
values. (d) By changing 1000 pixels to white the correct label porcupine is
restored.

mean of the pixel-wise relevance variance for the 253 successful ImageNet AEs
and were able to correctly classify 138 of these based on the threshold classifier.
(iv) For each of these 138 AEs we changed the 1000 pixels with the highest
relevance variances simultaneously to white and repeated this procedure until
the prediction label changed. Following this procedure, out of the 138 AEs 44
image labels have been successfully restored.

4 Conclusion and Discussion

In this paper we investigated the effect of smoothing existing LRP-rules by aver-
aging over stochastic input variations, a technique we refer to as SmoothLRP. We
showed that this method improves on current LRP-rules by increasing interrela-
tions between pixels and by reducing the impact of non-relevant features. Further,
we showed that while being more naive it performs comparable to Bayesian LRP,
a method applying LRP to Bayesian neural networks, indicating that being
able to reason about the model uncertainty does not improve the explainability
compared to modeling simple input based uncertainty. Moreover, we showed how
SmoothLLRP can be employed for restoring the true label of adversarial examples.
Even though these results were obtained by experimenting with a quite small
dataset and are in this sense preliminary, they seem very promising for a deeper
analysis in future.
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