
Evolutionary Deep Multi-Task Learning

Patrick Burke, Jonas Prellberg, and Oliver Kramer

University of Oldenburg
Department of Computer Science

26122 Oldenburg, Germany

Abstract. Multi-task learning is an approach to reduce the amount
of required training data by learning multiple tasks at the same time. In
the context of neural networks, multi-task learning is performed by sharing
weights or creating dependencies between weights of task-specific networks.
In this work, we propose an algorithm that uses a simple evolutionary
algorithm, which is able to match and also surpass learned weight sharing.
We evaluate the performance of this method on CIFAR-100, cast as a
multi-tasking problem, using an 18-layer residual network, and compare
our results to literature.

1 Introduction

Humans are excellent at learning from few examples, while deep neural networks
struggle in this setting. In the context of neural networks, Multi-task learning
(MTL) [1] is performed by sharing weights or creating dependencies between
weights of task-specific networks. The idea is to put pressure on the weights to
perform well under different tasks, which improves generalization. MTL can be
employed to improve the test error in some or all tasks compared to single-task
learning (STL), or to increase efficiency by matching the STL performance while
reducing the total number of weights.

We focus on MTL with hard parameter sharing between task-specific neural
networks. It is common to share weights between corresponding layers of the
networks, but it is difficult to decide which tasks should share weights with which
other tasks, i.e., to decide on a weight sharing scheme.

As a general rule, it makes sense to share early layers in convolutional neural
networks between many tasks because features are general [2] and applicable
to many tasks. However, for layers closer to the network output it is unclear
which tasks would benefit one another. Finding a weight sharing scheme is a
combinatorial problem that depends on the number of tasks, layers, and weights.
Consequently, the search space can easily become very large and finding a well-
performing scheme by hand requires tedious and error-prone experimentation.
Furthermore, every experiment requires to train neural networks, which is a
time-consuming step.

Several algorithmic approaches to solving MTL problems have been pro-
posed, a more recent example by Prellberg and Kramer [3] called learned weight
sharing (LWS) combines stochastic gradient descent and natural evolution strate-
gies to simultaneously optimize weights and a weight sharing scheme.

Section 2 presents related work. Our method is introduced in Section 3 and
experimentally analyzed in Section 4. Conclusions are drawn in Section 5.

135

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

2 Related work

LWS forms the conceptual basis of our method. Weight modules are shared
between layers at equal depth between task-specific networks of the same but
arbitrary architecture. A probability distribution over assignments is optimized
by a natural evolution strategy, while the weights themselves are trained by
gradient descent in alternating steps.

The routing net algorithm [4] uses a small router network to dynamically
select weight modules dependent on input data and task identifier. In contrast
to our method, the router is trained by reinforcement learning and the weight
modules are selected on a per-sample basis, whereas our architectures are fixed
after the optimization is complete.

Cross-stitch networks [5] and sluice networks [6] combine the output of task
specific layers using a learnable linear combination, which is then fed into the
next layers. Soft layer ordering [7] extends this technique so that shared layers
can be applied at different depths. Due to the weighted combination of outputs,
all three of these methods require all networks during inference, even if only one
task is being solved. In contrast, our approach produces task-specific networks
that can be independently used for inference.

3 Evolved Weight Sharing

This paper proposes evolved weight sharing (EWS), which is visualized in Fig-
ure 1. The solutions are assignments between weights and layers in task-specific
networks. For each layer in a network, we create a set of K weights that EWS
can plug into that layer in a task-specific network. This non-differentiable as-
signment is optimized by an EA, while the differentiable weights themselves are
optimized with standard methods such as Adam [8]. The fitness signal that
drives the EA search process is the aggregated validation accuracy of all task-
specific networks. Depending on this fitness signal, per-task mutation rates are
dynamically adapted during runtime to push the search process towards better
assignments.

The initial assignment is one without any weight sharing, i.e. each task-
specific network has its own weights. EWS then starts by creating an offspring
population of size λ through mutation of the solution with the highest fitness
from the current population. This mutation changes only the assignment be-

Find fittest
(evaluation #1)

Continue
training
weights

Find fittest
(evaluation #2)

Create
offspring

by mutation

 [termination condition not reached]

[termination
condition
reached]

Return best
assignment

Fig. 1: Overview of the EWS algorithm. Activities are grouped by color into
belonging to either assignment optimization or weight optimization.

136

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Weight	sets	

Layer	4

Layer	1

L

T

Task	1 Task	2 Task	3

Assignment

	assigned	from	 {	A,	B,	C	}

	assigned	from	 {	D,	E,	F	}

	assigned	from	 {	G,	H,	I	}

	assigned	from	 {	J,	K,	L	}

A A C

H H H
K L J

Layer	3
F E FLayer	2

Fig. 2: Matrix-representation of an assignment for an architecture with five
shareable layers and three tasks. Each element in the matrix refers to one of
K = 3 weight modules, e.g. task 1 and 2 in layer 1 share weight module A, while
task 3 has its own weight module C.

tween weights and task-specific layers but keeps the weight values unchanged.
Each assignment in this offspring population can be represented by a matrix, as
shown in Figure 2.

After the offspring population has been created, its fitness is evaluated. This
is done because the assignments have changed through the mutation and we
want to find the best-performing network under the new assignment. The fittest
network’s weights are then trained for a fixed number of steps, starting from its
current weights. This weight inheritance allows the algorithm to train weights for
many steps in total, even with a small number of training steps per generation.
Furthermore, it is a form of transfer learning because the same weight will be
trained on data from different tasks depending on the assignment. After training,
the fitness is evaluated again to find the best performing solution to use as a
parent.

3.1 Mutation

Random resetting is used as the mutation operator, with per-task mutation rates
∀t ∈ T : mt ∈ [0, 1]. For every task t and layer l in an assignment α, a weight is
kept unchanged with probability 1−mt. With probability mt, we assign to αl,t a
new weight chosen uniformly at random from the weight set Θl that corresponds
to the layer l.

3.2 Mutation Rate Adaptation

The per-task mutation rates are adapted depending on the performance of the
fittest assignment on every individual task. After each generation, the per-task
performance difference ∆pt between the current fittest assignment and the h-th
last fittest assignment is used to determine a new mutation rate mt. In our
experiments h is set to 3. Equation 1 shows how mutation rates are adapted

137

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

depending on the change in performance:

∀t ∈ T : mt =

max(mmin,mt − 0.05), 0.1 ≤ ∆pt

mt, 0 ≤ ∆pt < 0.1

min(mmax,mt + 0.01), ∆pt < 0

(1)

In general, the mutation rate is increased if performance decreases so that
it becomes more likely to create very different weight sharing schemes. If the
performance increases moderately, the algorithm shows fast progresses and the
mutation rate is kept unchanged. After very significant performance increases,
the mutation rate is reduced to prevent the configuration from being changed
too drastically. Finally, to make sure the search process does not come to a
complete halt or degenerates into a random search, the mutation rates are kept
between thresholds of mmin = 0.05 and mmax = 0.2.

3.3 Fitness

The fitness of an assignment α is measured by the harmonic mean of test set
accuracies pt(α,Θ) for each task t given all weights Θ. The harmonic mean
was chosen compared to an arithmetic mean because it will be more strongly
influenced by low-value outliers [9]. This prevents assignments that sacrifice a
lot performance on a single task to improve the average.

4 Experiments

We test EWS on the CIFAR-100 [10] cast as an MTL problem with 20 tasks,
using two different architectures selected from previous work. The first architec-
ture is a custom convolutional network from [4], and the second is a ResNet18
from [3]. This choice allows us to compare EWS to routing networks [4], cross-
stitch networks [5], and learned weight sharing [3].

As an additional evaluation metric, we propose the reduction quotient, which
describes what percentage of weights is saved by an assignment compared to
single-task learning. A value of r(α) = 1 means that the assignment a shares as
many weights as possible. Let L be the number of shareable layers, T be the
number of tasks and d(α, l) denote the number of distinct weights assigned in
the layer l of an assignment A, then the reduction quotient r(α) is defined as
the mean of all layer-wise reduction quotients:

r(α) =
1

L

L∑
l=1

T − d(α, l)

T − 1
. (2)

4.1 Convolutional network

The network architecture used in [4, 3] consists of four alternating convolutional
and max-pooling layers, followed by three fully connected layers with 128 units,
and finally another fully connected layer for each task output. Only the three

138

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

fully connected layers with 128 units are shareable between tasks in their setup,
so EWS will only be applied to these layers as well.

EWS is configured to choose from K = 20 weights for every layer and create
λ = 5 offspring every generation. The training step uses the Adam [8] optimizer
on 1 epoch of data in batches of size 256 and learning rate 10−3. If the fitness
does not improve for 40 generations, EWS terminates.

Method Test error [%] Reduction quotient

Cross-stitch networks [4] 47
Routing networks [4] 40

Full sharing [3] 39.08 ± 0.36 1
No sharing [3] 36.50 ± 0.43 0
LWS [3] 37.43 ± 0.53

EWS 36.12 ± 0.42 0.36

Table 1: EWS results (10 runs) using the convolutional network on CIFAR-100.

Table 1 compares results to literature. We can see that EWS beats all base-
lines, especially LWS. The EWS runs receive on average 12.6 epochs worth of
training (this varies due to the termination condition), which is reasonably close
to the 10.2 epochs that are used for LWS training.

4.2 Residual network

LWS [3] is also demonstrated using a ResNet18 [11] to show that the method
works on large-scale architectures. We follow their adaptions of the ResNet18
to small image sizes present in CIFAR-100 by removing the 3 × 3 max-pooling
layer and changing the convolution strides so that downsampling only happens
in the last three stages. Just like in [3], residual blocks will be shared as a unit
and the last layer is kept task-specific. All hyperparameters are identical to the
previous section.

Method Test error [%] Reduction quotient

Full sharing [3] 31.80 ± 0.44 1
No sharing [3] 32.53 ± 0.32 0
LWS [3] 30.84 ± 0.49

EWS (up to gen. 90) 30.68 ± 0.32 0.37
EWS (up to gen. 263; single run) 25.28 0.36

Table 2: EWS results (10 runs) using the ResNet18 on CIFAR-100.

Table 2 shows that EWS can reach by far the lowest test error of 25.28 %
after 263 generations (allowing EWS to run until performance does not im-
prove for 40 generations). In this run, all weights were trained an average of

139

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

169.2 ± 15.34 epochs. This is approximately three times the number of epochs
used for LWS [3]. For a fairer comparison, we consider only results up to gener-
ation 90. Up to this point, all weights were trained an average of 52.50 ± 11.58
epochs, which is on the same level as the theoretical ∼51 epochs used in [3].
With this restriction, our method slightly outperforms LWS.

5 Conclusion

We observe that low values for the amount of offspring λ are sufficient for the
search process to be successful. This may show that even sharing a few weights in
the right way increases generalization pressure enough to improve the outcome.
That being said, our gains over simple full sharing baselines and the algorithms
from literature (cross-stitch networks, routing net, and learned weight sharing)
highlight the importance of selecting specific assignments. Impressively, training
EWS to convergence using the ResNet18 resulted in an absolute 5 percent-point
improvement over LWS despite a much simpler algorithm.

References

[1] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997.

[2] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris.
Fully-adaptive feature sharing in multi-task networks with applications in person attribute
classification. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[3] Jonas Prellberg and Oliver Kramer. Learned weight sharing for deep multi-task learn-
ing by natural evolution strategy and stochastic gradient descent. arXiv preprint
arXiv:2003.10159, 2020.

[4] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive
selection of non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239,
2017.

[5] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch
networks for multi-task learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3994–4003, 2016.

[6] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Latent multi-
task architecture learning, 2017.

[7] Elliot Meyerson and Risto Miikkulainen. Beyond shared hierarchies: Deep multitask
learning through soft layer ordering. arXiv preprint arXiv:1711.00108, 2017.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[9] Jasmin Komić. Harmonic Mean, pages 622–624. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

140

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

