
Tangent Graph Convolutional Network

Luca Pasa, Nicolò Navarin and Alessandro Sperduti ∗

University of Padua
Department of Mathematics “Tullio Levi-Civita”

Human Inspired Technology Research Centre (HIT)
via Trieste 63, 35121, Padua - Italy

Abstract. Most Graph Convolutions (GCs) proposed in the Graph Neural
Networks (GNNs) literature share the principle of computing topologically
enriched node representations based on the ones of their neighbors. In
this paper, we propose a novel GNN named Tangent Graph Convolutional
Network (TGCN) that, in addition to the traditional GC approach, exploits
a novel GC that computes node embeddings based on the differences
between the attributes of a vertex and the attributes of its neighbors.
This allows the GC to characterize each node’s neighbor by computing its
tangent space representation with respect to the considered vertex.

1 Introduction

In the last few years, the definition of machine learning methods, particularly
neural networks, for graph-structured inputs has been gaining increasing attention
in literature. Neural Networks for Graphs (GNNs), while dating back to more
than 20 years ago [1], have recently gained popularity due to the good results in
tasks such as semi-supervised node classification [2], link prediction [2], graph
classification [3] and graph generation [4]. The first works extending neural
networks to inputs in the graph domain [1, 5, 6] are based on the idea of
aggregating the representation of a node and its neighbors, either in a recursive
or a feed-forward (convolutive) way. This idea has been re-branded later as graph
convolution or neural message passing. In general, the main idea is to define the
neural architecture following the topology of the graph. For each vertex, a new
hidden representation is computed through an aggregation function that involves
the vertex and its neighborhood. The aggregation function depends on some
parameters, that may be shared among all the vertices.
Recently, many graph convolutions have been proposed, the majority of them
sharing the basic principle of generating a (fixed-size) node representation consid-
ering its local neighborhood, obtaining topologically enriched representations of
the node. Almost all proposals, however, do not consider the differences between
the attributes of a vertex and the attributes of each single neighbour. In this
paper, we take a step forward in exploiting these differences by considering the
graph as a set of related samples from a manifold in the space of vertex attributes.
According to this view, it is possible to characterize the neighborhood of a vertex
by computing the attributes’ tangent space with respect to the considered vertex.

∗This research was supported by the Department of Mathematics, University of Padua with
the SID/BIRD 2020 project ”Deep Graph Memory Networks” and with the provision of the
necessary HPC resources.

117

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

In a nutshell, the attributes’ tangent space describes what are the directions to
follow to transform the attributes of the considered vertex into the attributes of
its neighbours. The idea of using an operator based on the tangent space was
already exploited in a handwritten digit classification task [7] to learn a classifier
invariant to legal transformations of the morphology of a handwritten digit, i.e.
small rotations, scale transformations, etc. The rationale behind our proposal is
that existing convolutions transform the set of node neighbors representations
into a single point that is a sort of centroid in some affine space. The tangent
space generated by the edge-based vertex-neighbor differences, on the other
side, encodes the principal directions of change in such a set, thus it encodes
complementary information. Starting from this idea, we propose a novel graph
convolution that exploits the principal subspace of dimension k of the differences
between the attributes of a vertex and the attributes of its neighbours, i.e. the
tangent space of dimension k. This convolution is then exploited, in conjunction
with a traditional graph convolution, to define a novel network combining both
of them: the traditional graph convolution focuses on the attributes of a vertex
and its neighbors, while the tangent graph convolution focuses on the differences
between the attributes of adjacent vertices. The tangent subspace basis for each
layer is initialized using an SVD-based approach and adapted during training
via a specifically designed. loss function that includes a term to enforce the
orthonormality of the basis. The cost of the initialization phase turns out to be
negligible. Note that the initialization process is performed only once, before the
start of the training phase. Experimental results on several datasets show the
benefit of the proposed approach.

2 Background

We use italic letters to refer to variables, bold lowercase to refer to vectors, and
bold uppercase letters to refer to matrices. We use uppercase letters to refer
to sets or tuples. Let G = (V,E,X) be a graph, where V = {v0, . . . , vn−1}
denotes the set of vertices (or nodes) of the graph, E ⊆ V × V is the set of
edges, and X ∈ Rn×s is a multivariate signal on the graph nodes with the i-th
row representing the attributes of vi. In the following, we also consider the
training set Tr which is the set containing all the graphs used to train the model.
Moreover, we also define the set ETr = {EG|∀G ∈ Tr} containing all the edges
of the graphs belonging to the training set Tr. With N (v) we denote the set of
nodes adjacent to node v. In the following definitions, for the sake of simplicity,
we ignore the bias terms.

In this work, along with the Tangent Graph Convolution, we also use the
GraphConv convolution proposed in [8], defined as:

GraphConv(h(i−1)
v) = σ(h(i−1)

v W
(i)
1 +

∑
u∈N (v)

h(i−1)
u W

(i)
2), (1)

where W
(i)
1 ,W

(i)
2 ∈ Rmi−1×mi (with m0 = s) are the convolution parameters,

and σ is an element-wise (usually, nonlinear) activation function.

118

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

3 Tangent GCN

In this section, we introduce our tangent-based graph neural network. We start
by defining our Tangent Graph Convolution (TGC) as:

TGC(h(i−1)
v) = σ(h(i−1)

v +
∑

u∈N (v)

(h(i−1)
u −h(i−1)

v)[t
(i)
1 , . . . , t

(i)
k][t

(i)
1 , . . . , t

(i)
k]>W(i)),

where W(i) ∈ Rmi−1×mi , m0 = s, h
(i−1)
v ∈ R1×mi−1 , and t

(i)
j ∈ Rmi−1×1 is such

that ‖t(i)j ‖ = 1, and t
(i)
j

>
t
(i)
p = 0 if and only if j 6= p, i.e., T(i) = [t

(i)
1 , . . . , t

(i)
k]

is a basis of the tangent space to be learned. The convolution computes the
differences between the representation of a vertex and each of its neighbours.
Each difference vector is then projected onto the tangent space to obtain the
coefficients that will be used to represent the projection of the difference vector in
the tangent space. The vector is then linearly transformed by the weight matrix
W(i).
The Tangent GCN (TGCN) is then defined as a multi-layer model, where each
layer (except for the first) is composed of two covolutional operators: a TGC
and a GraphConv. The model, with l convolutional layers, is defined as follows
(i ∈ [2 . . . l]):

hG(1)

v = hT (1)

v = h(1)
v = GraphConv(xv),

hG(i)

v = GraphConv(hG(i−1)
v), hG(i)

v ∈ R1×mG
i ,

hT (i)

v = TGC(hT (i−1)

v), hT (i)

v ∈ R1×mT
i , (2)

h(i)
v = [hG(i)

v ,hT (i)

v].

The vertex embeddings are then aggregated to obtain a single graph-level repre-
sentation by concatenating the sum, the maximum and the average operators [3]

for all the layers obtaining s = [sum({h(i)
v }), avg({h(i)

v }),max({h(i)
v })| 1 ≤ i ≤ l],

where sum, max and avg are computed element-wise. The readout is defined
by a composition of zero or more dense layers yj = ReLu(yj−1W

readout
j),

j = 1, . . . , q, y0 = s, followed by an output layer o = LogSoftmax(yqW
out).

Weights initialization. All the weights of GraphConvs are randomly initialized,
as well as the weight matrices of the TGC, except for the matrices T(i), which are

initialized as follows. First of all, we set hT (1)

v = hG(1)

v . Then, for i ∈ [2 . . . l], the

matrices T(i) = U
(i)
k are defined, where V

(i)
k S

(i)
k U

(i)
k

>
is the k-truncated SVD

decomposition of matrices ∆H(i) composed of a row vector hT (i−1)

u − hT (i−1)

v for
each edge (v, u) ∈ ETr:

∆H(i) =
[
hT (i−1)

u − hT (i−1)

v

]
∀(v,u)∈ETr

∈ R|E
Tr|×mT

i−1 .

Please, notice that ∆H(2) can be readily defined starting from hT (1)

v . Moreover,

by construction U
(i)
k will constitute a basis of the k-subspace of the difference

vectors. Finally, for computational reasons, U
(i)
k is computed from ∆H(i)>∆H(i).

119

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Model \ Dataset PTC NCI1 PROTEINS D&D COLLAB IMDB-B IMDB-M

PSCN[14] 60.0±4.8 76.3±1.7 75.0±2.5 76.3±2.6 72.6±2.2 71.0±2.3 45.2±2.8

FGCNN[3] 58.8±1.8 81.5±0.4 74.6±0.8 77.5±0.9 - - -

DGCNN[3] 57.1±2.2 72.9±0.9 73.9±0.4 78.1±0.7 - - -

DGCNN[19] - 76.4±1.7 72.9±3.5 76.6±4.3 57.4±1.9 53.3±5.0 38.6±2.2

GIN[19] - 80.0±1.4 73.3±4.0 75.3±2.9 75.9±1.9 66.8±3.9 42.2±4.6

DIFFPOOL[19] - 76.9±1.9 73.7±3.5 75.0±3.5 67.7±1.9 68.3±6.1 45.1±3.2

GraphSAGE[19] - 76.0±1.8 73.0±4.5 72.9±2.0 71.6±1.5 69.9±4.6 47.2±3.6

TGCN 58.6±8.9 82.8±2.0 73.9±3.6 78.7±3.8 74.9±1.9 72.1±4.9 49.1±3.6

Table 1: TGCN accuracy comparison. Epoch selected on validation set.

Loss Function. The matrices T(i) are learnable parameters. Therefore, during
training the value of the tangent weights are updated. In order to maintain
the orthonormality property through the optimization process, the loss function
for the TGCN model, in addition to the term used to learn the task (e.g. the
negative log likelihood for classification tasks), includes a term to guarantee the

orthonormality of the T(i) matrices, i.e. L = C(o, ô) + γ(
∑l

i=2 ||T(i)>T(i) − I||),
where C is the cost function used to learn the considered task, and ô is the target.
The second term enforces orthonormality by penalizing the covariance matrix of
T(i) to be far from the identity matrix I. In our experiments, the value of γ was
selected through the model selection process.

4 Experimental Results

We empirically validated the proposed TGCN on 4 commonly adopted graph
classification benchmarks modeling bioinformatics problems (PTC [9], NCI1 [10],
PROTEINS [11] and D&D [12]) and on 3 large graph social datasets (COLLAB,
IMDB-B, IMDB-M [13]). We compare TGCN versus several state-of-the-art GNN
architectures: PSCN [14], Funnel GCNN (FGCNN) [3], DGCNN [15], GIN [16],
DIFFPOOL [17] and GraphSage [18]. The results were obtained by performing 5
runs of 10-fold cross-validation. The hyper-parameters of the model were selected
using a grid search, where the explored sets of values were changed based on the
considered dataset. As validation methodology we decided to follow the method
proposed in [19], that in our opinion, turns out to be the fairest. For this reason
the results reported in [16, 20, 17] are not considered in our comparison since
the model selection strategy is different from the one we adopted and this makes
the results not comparable. For the sake of completeness, we report the (higher)
results obtained by the TGCN with the validation policy used in [16, 20, 17]
in the Github repository of the project that also hosts the code used for the
experiments1. In the same web page we report the values of the hyper-parameters
used to perform the grid search. For the experimental evaluation, we used the
LeakyRelu activation function for the GC and TGC layers, while we used Relu
for the readout layers. For what concerns the readout, we considered a funnel

1https://github.com/lpasa/TangentGCN

120

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

https://github.com/lpasa/TangentGCN

structure inspired by the one in [3], and we considered q = 0, 1, 2 readout layers.
The readout structure, as the other hyper-parameters, was chosen independently
for each experiment by the validation process.

The results reported in Table 1 show better performances for TGCN compared
to competing methods in four datasets, and competitive performances on the
remaining three datasets. Specifically, in NCI1, D&D, IMDB-B and IMDB-M
TGCN outperforms state-of-the-art results. In the COLLAB dataset, TGCN
obtained the second higher result, while in PTC, the smallest considered dataset,
TGCN performance is close to FGCNN, but it shows an higher variance.

To asses the influence of each type of convolution, we performed an ablation
study on NCI1 and IMDB-B. We developed two baseline models that share the
same structure of TGCN. The first model exploits only GraphConv operators,
therefore the operations defined in eq. (2) are not performed, while the second one

does not compute hG(i)

v , i ∈ [2 . . . l]. Both models were validated using the same
procedure used for the TGCN. The first baseline model achieved an accuracy
of 81.3±1.9 on NCI1 and 70.8±4.4 on IMDB-B, while the second one reached
an accuracy of 81.8±1.5 on NCI1 and 70.4±5.2 on IMDB-B, confirming that
the two convolutions learn different representations that encode complementary
information.

5 Conclusion and Future Directions

In this paper, we proposed a novel graph convolution, dubbed Tangent Graph
Convolution (TGC), that aggregates the projections of the differences between
the representations of a node and its neighbors in a tangent space initialized as
the principal components of the training set node attributes differences, and that
is refined during training while enforcing orthonormality via an ad-hoc loss term.
We exploited the TGC, along with the widely adopted GraphConv, to develop a
GNN architecture, dubbed TGCN, for graph classification tasks. We empirically
validated the TGCN on 7 benchmark datasets, achieving state-of-the-art-result
in 4 of them, and competitive results on the remaining 3.

In the future, we plan to study more expressive architectures exploiting
the TGC, and to explore more complex aggregation methods. Furthermore,
we will study more in deep the influence of the information conveyed by the
representation of the vertex’ neighbors in the tangent space.

References

[1] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification
of structures. IEEE Trans. Neural Networks, 8(3):714–735, 1997.

[2] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, pages 1–14, 2017.

[3] Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. Learning kernel-based embed-
dings in graph neural networks. In 24th European Conference on Artificial Intelligence -
ECAI 2020, 2020.

121

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

[4] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained
Graph Variational Autoencoders for Molecule Design. In NeurIPS, may 2018.

[5] Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[6] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2008.

[7] Diego Sona, Alessandro Sperduti, and Antonina Starita. A constructive learning algorithm
for discriminant tangent models. In Michael Mozer, Michael I. Jordan, and Thomas
Petsche, editors, Advances in Neural Information Processing Systems 9, NIPS, Denver,
CO, USA, December 2-5, 1996, pages 786–792. MIT Press, 1996.

[8] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order
Graph Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4602–4609, oct 2019.

[9] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive
toxicology challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001.

[10] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for
chemical compound retrieval and classification. Knowledge and Information Systems,
14(3):347–375, 2008.

[11] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinfor-
matics, 21(suppl 1):i47–i56, 2005.

[12] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of molecular biology, 330(4):771–783, 2003.

[13] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1365–1374, 2015.

[14] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional
neural networks for graphs. In ICML, pages 2014–2023, 2016.

[15] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[16] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph
Neural Networks? In International Conference on Learning Representations, 2019.

[17] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In
Advances in Neural Information Processing Systems, pages 4800–4810, 2018.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1024–1034, 2017.

[19] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In International Conference on Learning
Representations, 2020.

[20] Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a
dissection on graph classification. arXiv preprint arXiv:1905.04579, 2019.

122

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

	Introduction
	Background
	Tangent GCN
	Experimental Results
	Conclusion and Future Directions

