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Abstract. Prediction of movements is essential for successful cooperation
with intelligent systems. We propose a model that integrates organized
spatial information as given through the moving body’s skeletal structure.
This inherent structure is exploited in our model through application of
Graph Convolutions and we demonstrate how this allows leveraging the
structured spatial information into competitive predictions that are based
on a lightweight model that requires a comparatively small number of
parameters.

1 Introduction

Human motion forecasting has many useful applications. As intelligent systems
should interact with humans, it becomes necessary to predict human movements
and actions. Take, as one example, a cooperative task in which a human and a
robot should safely collaborate in an assembly process. Therefore, multiple tech-
niques have been developed to tackle such tasks. Ranging from simple heuristic
approaches towards learning-based approaches. Machine learning approaches for
such temporal data were mostly relying on recurrent networks that were applied
to vectorized representations of joints. These were using skeletal structure only
implicitly. The latest advances in geometric deep learning (GDL) provide a di-
rect way to leverage the skeletal structure for predictions via graph convolutions
(GCNs). In this work, we propose a straightforward implementation of such a
model. We use spatio-temporal convolutions together with a type of GCN to
extract spatio-temporal features in human motion, resulting in a simple autore-
gressive model. We adapt dilated causal convolutions for temporal modeling
as used in [1], but include local joint connectivity which leads to a lightweight
spatio-temporal operation. The code will be made publicly available.1

2 Methods

In this section, we introduce our deep geometric model for motion forecasting.
The model is based on Graph-WaveNet [2], a spatio-temporal extension to the
original WaveNet [1].

∗This research was supported by the research training group “Dataninja” (Trustworthy
AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis)
funded by the German federal state of North Rhine-Westphalia.

1https://github.com/LucaHermes/lightweight-motion-forecasting
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Fig. 1: Model architecture, with N
consecutive spatio-temporal process-
ing blocks, followed by two alternat-
ing ReLU and linear layers (1 × 1).
Rounded arrows denote a channel-
split.

Input to the model is a time series
of T consecutive skeletal states with J
joints and a dj-dimensional joint repre-
sentation, S ∈ RT×J×dj (Fig. 1 shows
the model architecture). In our exper-
iments, we represent joints as quater-
nions, i.e. dj = 4.

First, the linear input layer (1×1) is
applied to each joint and acts as a train-
able embedding for the dj-dimensional
joint inputs. Secondly, N consecutive
Graph-WaveNet blocks extract spatio-
temporal features from the given time
series. Every block produces a skip out-
put and the sum of these outputs are,
thirdly, passed to an MLP that is ap-
plied per joint.

Every Graph-WaveNet block per-
forms a spatio-temporal convolution
(ST-Conv) followed by a purely spatial
graph-convolution (K-GCN), as shown
in Fig. 1. Both operations use the same
output dimensionality, to which we re-
fer to as the block dimensionality db. A
residual connection is applied which bypasses both convolutions by adding the
block input to the block output. The result is fed to the subsequent block.

We use the following model configuration in our experiments: The input
layer consists of 64 neurons. We use N = 5 blocks with db = 64 and a skip
output dimensionality of 256. The two layers in the output MLP have 256 and 4
neurons, respectively. The resulting model has 4.46× 105 trainable parameters.

Spatio-Temporal Convolution In the original Graph-WaveNet a purely
temporal convolution is used to extract temporal features from the input. In con-
trast, we substitute the temporal convolution that acts on each joint individually
with a spatio-temporal convolution that integrates information from neighboring
joints. This operation is inspired by the temporal extension module (TEM) [3],
which is a type of GCN placed prior to a temporal operation. Therefore, the
temporal operation operates on information from the neighborhood Nj .

We integrate the idea of TEM directly into the spatio-temporal convolution
operation. This means, instead of applying a 1-dimensional convolution on the
trajectory of a single joint, we apply a 2-dimensional spatio-temporal convolution
on the trajectory of a kinematic chain of joints. The joint hierarchy is given by
the kinematic tree of the skeleton. Through selecting the hip as the root joint,
an ordering is introduced that extends into the leaf-joints, i.e. the head, hands
and foot joints.
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Fig. 2 visualizes our spatio-temporal convolution. First, the parent and
grandparent joint for every joint j are sampled based on the kinematic tree.
Afterwards, the trajectories for these three joints are stacked and convolved using
a convolutional kernel W ∈ Rτs×τt×din×dout (blue rectangle). The kernel size is
denoted as τs and τt in the spatial and temporal dimension, respectively. The
applied convolution is causal and dilated in the temporal dimension following
the pattern of [1, 2].
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Fig. 2: (a) Samplig strategy for the ST-Conv. (b) Computation of the spatio-
temporal convolution. A 2-dimensional kernel computes the convolution of the
time-series from three joints. The kernel size in the spatial and the temporal
domain is denoted by τs and τt, respectively.

Spatial Graph-Convolution The purely spatial convolution is computed
using graph convolutions (GCNs) as defined in [4]. Instead of using the full
skeletal graph, we again utilize the kinematic tree that was described above
to convert the undirected skeletal graph into three directed subgraphs: In the
first subgraph, an edge e = (j, u) exists if and only if joint j relative to joint
u is further up in the hierarchy of the kinematic tree. This subgraph retains
all edges linking a joint to its immediate child joints. The second subgraph
is similarly constructed, but with inverted edge direction, therefore retaining
all edges linking a joint to its immediate parent joints. The third subgraph
consists only of self-loops. The subgraphs are represented by three adjacency
matrices Ai. Note that A2 corresponds to the identity matrix. The output of
this operation is computed as follows:

K-GCN(Xin) =
2∑
i=0

D−1
i AiXinWi

The inputs are given as Xin, Wi is the parameter matrix of the ith GCN oper-
ation and Di denotes the degree matrix of subgraph i.

3 Results

In this section, we describe the experiments we conducted on the presented
model. To quantify the performance, we perform an evaluation using protocols
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from the related literature and provide qualitative results.

Dataset and Training Setup We train and evaluate the model on the
Human3.6M (H3.6M) dataset [5, 6]. The dataset consists of motion capture
data from seven different human subjects performing 15 different actions. Table
1 and 2 provide an overview of these actions. We follow the general preprocessing
procedure in [7], downsampling the dataset by a factor of 2 to 25 Hz and mirror
each trajectory across the y-z-plane.

We split the data by subject into a train (subjects 1, 7, 8, 9, 11), validation
(subject 6) and test set (subject 5). The models are trained using a batch size
of 16 trajectories over 3000 epochs on the mean absolute error in the quaternion
space. An epoch consists of five samples from every sequence. A sequence is
a single trial of one subject, performing a single action. Each sample contains
successive frames from a single downsampled or mirrored version of the trajecto-
ries. The model is trained using the Adam optimizer with an initial learning rate
of η = 0.001 that is decayed exponentially by a factor of α = 0.999 after every
epoch. We use a seed trajectory length of 32 frames (= 1.28sec) to condition the
model, because this perfectly fits into the receptive field. The target sequence
has a length of 10 frames (= 400ms) and was generated autoregressively.

Model Evaluation We show qualitative and quantitative results for the pro-
posed model. For our model evaluation, we use the non-mirrored, but downsam-
pled dataset. For the quantitative evaluation, we follow the standard evaluation
protocol of [8]. This protocol first constructs an evaluation set that consists of
four random samples from every sequence in the test set, i.e. the trials of subject
5. 2 An error metric quantifies the performance of the model on this evaluation
set. The metric used by [8] is the Euclidean distance between the predicted and
target rotations converted to Euler angles. The following equation summarizes
this metric:

d(x,y) =
1

T

T∑
t=0

√√√√ J∑
j

∑
d

(xt,j,d − yt,j,d)2,

where T is the number of time-steps, J is the number of joints and the sum over d
accumulates the error in the x, y and z dimension of the given Euler angles. The
final results correspond to the average taken over the four samples. Following
[9], the results for a running average over 2 and 4 frames (Run. avg. 2/4) and a
zero-velocity-model are also documented as baselines. The zero-velocity model
returns the first observed frame as the prediction for all successive frames.

Table 1 shows the results under the standard protocol for four actions. The
running average and zero-velocity baselines are included, as well as results for
multiple SoTA models. Table 2 lists additional results for the remaining 12 ac-
tions (we include results from other models when available for comparison). Our

2We were able to draw the same sequences as [8] using the RandomState implementation
of the random package of NumPy (v. 1.19.2) with a seed of s = 1234567890.
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forecasting model generally shows competitive results that in some cases, e.g.
eating, directions, and walkingtogether, outperform the referenced approaches.
The original Graph-WaveNet architecture converges to a zero-velocity model.

Table 1: Quantitative results on action forecasting under the standard pro-
tocol of [8]. We further specify the input and output mode of some models
(input/output), where either velocities (vel.) or absolute angles (abs.) are used.

Walking Eating Smoking Discussion No. of
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 Parameters

Run.-avg. 4 0.64 0.87 1.07 1.20 0.40 0.59 0.77 0.88 0.37 0.58 1.03 1.02 0.60 0.90 1.11 1.15 -
Run.-avg. 2 0.48 0.74 1.02 1.17 0.32 0.52 0.74 0.87 0.30 0.52 0.99 0.97 0.41 0.74 0.99 1.09 -
Zero-velocity 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04 -
LSTM-3LR [8] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23 1.48× 107

GRU sup. [9] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09 3.37× 106

QuaterNet GRU abs./vel. [7] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93 9.5× 106

QuaterNet CNN abs./vel. [7] 0.25 0.40 0.62 0.70 0.22 0.36 0.58 0.71 0.26 0.49 0.94 0.90 0.30 0.66 0.93 1.00 8.8× 106

DCT-GCN short-term [10] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85 2.6× 106

DMGNN [11] 0.18 0.31 0.49 0.58 0.17 0.30 0.49 0.59 0.21 0.39 0.81 0.77 0.26 0.65 0.92 0.99 6.26× 107

Ours abs./vel. 0.23 0.37 0.61 0.69 0.18 0.31 0.54 0.66 0.23 0.46 0.93 0.90 0.31 0.70 0.97 1.07 4.46× 105

Ours vel./vel. 0.19 0.34 0.57 0.63 0.16 0.29 0.50 0.60 0.22 0.41 0.85 0.81 0.22 0.57 0.84 0.93 4.46× 105

Table 2: Quantitative results for the remaining actions; Continuation of table 1.

Directions Greeting Phoning Posing
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

GRU sup. 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48
DCT-GCN st 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24
DMGNN 0.25 0.44 0.65 0.71 0.36 0.61 0.94 1.12 0.52 0.97 1.29 1.43 0.20 0.46 1.06 1.34
Ours abs./vel. 0.32 0.47 0.68 0.80 0.42 0.72 1.14 1.36 0.54 1.00 1.34 1.47 0.27 0.55 1.05 1.27
Ours vel./vel. 0.24 0.43 0.77 0.81 0.35 0.61 1.01 1.20 0.53 1.00 1.28 1.40 0.26 0.51 1.08 1.32

Purchases Sitting Sittingdown Takingphoto
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

GRU sup. 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05
DCT-GCN st 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70
DMGNN 0.41 0.61 1.05 1.14 0.26 0.42 0.76 0.97 0.32 0.65 0.93 1.05 0.15 0.34 0.58 0.71
Ours abs./vel. 0.56 0.75 1.03 1.15 0.31 0.50 0.91 1.12 0.33 0.65 0.96 1.09 0.19 0.42 0.73 0.93
Ours vel./vel. 0.42 0.61 1.08 1.15 0.30 0.49 0.90 1.09 0.29 0.65 0.97 1.08 0.15 0.34 0.58 0.72

Waiting Walkingdog Walkingtogether Average
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

GRU sup. 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15
DCT-GCN st 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.51 0.83 0.95
DMGNN 0.22 0.49 0.88 1.10 0.42 0.72 1.16 1.34 0.15 0.33 0.50 0.57 0.27 0.52 0.83 0.95
Ours abs./vel. 0.25 0.51 0.93 1.10 0.46 0.79 1.16 1.32 0.17 0.37 0.58 0.65 0.32 0.57 0.90 1.04
Ours vel./vel. 0.21 0.51 0.97 1.17 0.43 0.78 1.10 1.24 0.15 0.32 0.50 0.54 0.27 0.52 0.87 0.98

Fig. 3 visualizes predicted and true individual quaternion dimensions. Overall,
the predictions are very similar to ground truth, but finer details are smoothed
out. This is clearly visible in the trajectory of the right knee joint performing
the walkingdog action. However, the model is still able to correctly predict the
phase timing and thus model major movement features even in the long-term
future (> 400ms).

4 Conclusions

We combine the well-established causal dilated convolutions from WaveNet with
geometric deep learning principles resulting in a lightweight autoregressive model.
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Fig. 3: Ground truth (dotted lines) and prediction (solid lines) for four different
joints (columns) and four different actions (rows) of the second trial from subject
5. Each plot shows 32 seed frames (= 1.28sec) and 32 target frames.

With about 4.46× 105 parameters, our model is an order of magnitude less com-
plex compared to current models (cf. Table 1). Nonetheless, it shows competitive
results compared to current approaches when evaluated on the H3.6M dataset
for skeletal human motion forecasting. Furthermore, we show that this model is
able to predict the phase timing even in a long-term forecasting setup.
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