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Abstract. Lifelong learning is a long-standing aim for artificial agents
that act in dynamic environments, in which an agent needs to accumulate
knowledge incrementally without forgetting previously learned representa-
tions. We investigate methods for learning from data produced by event
cameras and compare techniques to mitigate forgetting while learning in-
crementally. We propose a model that is composed of both, feature extrac-
tion and continuous learning. Furthermore, we introduce a habituation-
based method to mitigate forgetting. Our experimental results show that
the combination of different techniques can help to avoid catastrophic for-
getting while learning incrementally from the features provided by the
extraction module.

1 Introduction

An event camera is a dynamic vision sensor that responds to the changes of
brightness at any pixel location. Lower power consumption, higher dynamic
range and high temporal resolution are the advantages of event cameras over
conventional shutter cameras. These advantages make an event sensor suitable
for real-life applications that rely on fast responses, time and scene illumination.
Such scenarios build the ground for the development of artificial systems that are
dependent on the process of continuous learning. These aspects motivated us to
use event-based data for lifelong learning. The architectures for lifelong learning
that are based on a pre-trained feature extractor deliver state-of-the-art results
[10, 11]. However, these architectures consider data that are produced by a
conventional shutter camera. In our paper, we show that lifelong learning from
event-based data can follow the same strategy. Furthermore, the application
of event cameras opens new possibilities for the development of novel learning
systems in dynamic environments.

2 Background

Since each pixel in an event camera responds to brightness change independently,
the generated asynchronous output carries challenges for the processing of such
data. The event-based sequences can be processed by event-by-event methods
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or methods that group events [2]. The event-by-event methods process events
sequentially. As an example of such a method, Phased LSTM [8] is an extension
to LSTM [4] and introduces a new time gate. This gate allows the updates to
a memory cell only during some specific periods. Another approach is to group
events to image-like data. A histogram is one of the possibilities to convert
events to the event frame [6]. To convert events to a histogram, the occurrences
of brightness change at any pixel location over a particular period of time are
counted. Specifically, the events that refer to a brightness increase are stored
in one histogram, and the events that capture brightness decrease are saved to
another histogram. Two histograms act then as two input channels to a convo-
lutional neural network (CNN). Since an event camera reacts only to brightness
change, a lot of pixel locations in a histogram can contain no values. Thus, a
histogram represents the edges of a scene captured by an event camera. How-
ever, a conventional convolutional operation causes dilation when the input is
sparse. Therefore, a sparse CNN that preserves sparseness is a more reasonable
choice [3].

Methods that are successfully used to mitigate catastrophic forgetting rely on
regularization-based techniques or use replay mechanisms [10, 11]. Regularization-
based methods restrict the updates to the model’s parameters that are impor-
tant for encoding previous knowledge. One of these methods that estimates this
importance is synaptic intelligence [12] which introduces a regularization term
that is added to the total loss to penalize changes to important parameters while
learning a new task. We will present and evaluate a simpler method using a neu-
ron habituation mechanism. The methods that utilize replay mechanisms store
either some previous samples or learn the representations for previously learned
data. A generative model, in particular, a variational autoencoder can be used
to learn latent representations of data [11]. We show that the architecture for
lifelong learning from event-based data can utilize the same methods that are
applied to frame-based images.

3 Approach

We propose an architecture that consists of a feature extractor and a component
for continuous learning, visualized in Figure 1. To the best of our knowledge,
there are no approaches for direct comparison. Lungu et al. used a memory-
based method for incremental learning of hand gestures [5]. However, it is ques-
tionable if their approach is extensible to scenarios in which the input is more
complex.

3.1 Feature Extraction

To design a feature extraction module, we compare Phased LSTM and sparse
CNN as possible models to extract features from events. We train Phased LSTM
in a supervised way and sparse CNN in a self-supervised way following the
batch learning strategy. On the one hand, we use Phased LSTM as the event-
by-event method, and on the other hand, we utilize Sparse CNN that learns
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Fig. 1: Illustration of the proposed architecture. Sparse CNN trained in a self-
supervised way extracts features from the events represented as histograms. The
continuous learning component learns incrementally from the extracted features
by utilizing replay through the VAE, synaptic intelligence, and habituation.

from histograms as grouped events. Based on the results provided in Section 4,
we select only the self-supervised approach using sparse CNN for the feature
extraction module. Self-supervised learning is a subset of unsupervised learning,
where no labels are provided during training. We follow the same strategy
for self-supervised learning proposed by Chen et al. [1]. However, instead of
frame-based input, we provide events as histograms. The model applies random
augmentations directly to histograms, thus learning in a contrastive way by
maximizing the agreement between two augmented representations of the same
object (Figure 1, bottom).

3.2 Continuous Learning

The module for continuous learning operates on the features provided by the
feature extraction module. The learning process follows the incremental strategy,
where a model has access only to some object categories during the learning
episode. Thus, a learning episode contains only a subset of non-repeating objects
that belong to the same category. We base our model on the method proposed
by Ven et al. called brain-inspired replay [11]. It uses a variational autoencoder
(VAE) that is trained together with a classifier (Figure 1, top).

Additionally, we introduce a habituation-based method to mitigate catas-
trophic forgetting while learning incrementally. This method utilizes the concept
of habituation that was successfully applied to self-organizing neural networks
[10]. Habituation is the reduction of responses to repeated stimuli. We quip
each neuron in the last fully connected layer of an encoder with a habituation
counter, which is initialized with 1. During training, only a part of neurons with
the highest activation values are habituated. We slightly modify the habituation
update rule presented in [10] and define it as follows:
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∆hi = τ · (1− hi)− τ, (1)

where hi is a habituation counter of a neuron i, τ is the decay rate that
controls a steepness of decay. Consequently, a habituation counter is a monoton-
ically decreasing function. To constrain the changes to the model’s parameters,
the gradient of a neuron ri is scaled by the habituation counter of this neuron
during each learning iteration:

∂L
∂ri
← ∂L

∂ri
· hi, (2)

where ∂ is a partial derivative and L is a loss function. Although the
habituation-based regularization method is similar to synaptic intelligence, it
can be utilized in each layer of a neural network with different values for τ , thus
providing more plasticity during learning. We compare different combinations
of brain-inspired-replay, synaptic intelligence and habituation to investigate the
effect of the habituation-based approach on the mitigation of catastrophic for-
getting while learning incrementally.

4 Experimental Results

We train and evaluate the proposed model on the N-Caltech101 dataset [9]. This
dataset contains event-based representations recorded by an event camera from
static images. While an image was shown on a screen, an event camera made
three saccadic movements to record events. We use the same training and test
sets as used in [7]. The code is available from http://software.knowledge-t

echnology.info. To first evaluate the feature extraction module under optimal
conditions, the whole training set is utilized to learn a feature extraction module
following the batch learning strategy. Each sample in the dataset can contain
dozens of thousands of events, thus the training time of Phased LSTM becomes
intractable since Phased LSTM processes events sequentially. Therefore, we ran-
domly select only 5% of events, but at least 5000. Histograms are created from
50000 consecutive events; however, this interval of events is randomly placed
over the whole sequence of events. Table 1 shows the classification accuracy of
Phased LSTM and the classification accuracy of a linear classifier trained on top
of sparse CNN. Although Phased LSTM achieves worse results, it operates on
a portion of events, which can lead to a drop in performance. Yet, using even
5% of events causes a huge overhead in training time when compared to sparse
CNN. Furthermore, a feature extractor that is trained in a supervised way on
the same training set that is used for the continuous learning module is not a
fair condition. Thus, either a feature extractor that is trained without labels or
a feature extractor that is used to extract features from different data is a more
reasonable approach. Based on these conditions, we use sparse CNN as a feature
extractor for the continuous learning module.

To evaluate the proposed habituation-based method, we combine habituation
with the brain-inspired replay (BIR) and synaptic intelligence (SI) methods. All
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Table 1: Evaluation of the feature extraction module on N-Caltech101. (left)
Classification accuracy using Phased LSTM. (right) Classification accuracy us-
ing linear classifier trained on top of frozen features from sparse CNN.

Phased LSTM (supervised) sparse CNN (self-supervised)

Training Test Training Test Top-1 Test Top-5

35.35 30.90 51.49 42.38 62.60

hyper-parameters are the same for all methods to provide a fair comparison.
The strength parameter of SI was found by a grid search and is set to 109. The
habituation-based method (H) has two hyperparameters: a decay rate τ and
the fraction γ of neurons with the highest activation values that are allowed
to be habituated during each learning iteration. We set γ to 0.05 and 0.01 for
the BIR+H and BIR+SI+H methods, respectively. For the strategies BIR+H
and BIR+SI+H the values for τ are set to 0.3 and 0.02, respectively. Figure 2
illustrates class-incremental learning on N-Caltech101. The number of learning
episodes is set to 20. Each learning episode contains samples from 5 different
non-repeating object categories. The shaded areas show the standard error of the
mean. The experiment was executed for three trials, and each trial, a new seed
and the random order of classes were used. The BIR+H and BIR+SI methods
achieve after learning data of all episodes on average the classification accuracy
of 8.94 and 12.26, respectively. The addition of the habituation-based method to
BIR+SI provides a slight but significant increase in test accuracy: 15.40± 0.55.
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Fig. 2: Class-incremental learning on N-Caltech101.

5 Conclusion

We presented an architecture for lifelong learning, consisting of a feature extrac-
tor and a module for continuous learning. We showed that the Phased LSTM
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is not a favourable method for learning long event-based sequences. The Sparse
CNN trained in a self-supervised way achieves better results but histograms
discard short time-scale information. A combination of brain-inspired replay
and synaptic intelligence with a simple habituation method, which was previ-
ously applied to self-organizing neural networks, yields the best performance
over class-incremental learning of 100 classes. Furthermore, with this presented
approach in this paper we provide useful insights into the application of event
cameras for real-life scenarios, in which incremental accumulation of knowledge
is crucial.
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