
Improving Graph Variational Autoencoders with
Multi-Hop Simple Convolutions

Erik Jhones F. do Nascimento1, Amauri H. Souza1 and Diego Mesquita2

1- Federal Institute of Ceará - Department of Computer Science
Fortaleza - Brazil

2- Aalto University - Department of Computer Science
Espoo - Finland

Abstract. Variational auto-encoding architectures represent one of the
most popular approaches to graph generative modeling. These models
comprise encoder and a decoder networks, which map back and forth be-
tween the input and latent spaces. Notably, most of the literature in
variational autoencoders (VAEs) for graphs focuses on developing more ef-
ficient architectures at the expense of increased complexity. In this work,
we pursue an orthogonal direction and leverage multi-hop linear graph
convolutional layers to create efficient yet simple encoders, boosting the
performance of graph autoencoders. Our results demonstrate that our ap-
proach outperforms popular graph VAE baselines in link prediction tasks.

1 Introduction

Variational autoencoders (VAEs) [1] have become a prominent framework for
generative modeling in diverse areas, such as computer vision and natural lan-
guage processing. In the context of graphs, auto-encoding architectures (in-
cluding VAEs) have also been successfully applied to many challenging tasks,
such as link prediction [2, 3, 4], node clustering [5, 6], matrix completion for
recommendation systems [7], and generation of molecular graphs [8, 9].

In general, VAEs for graphs consist of an encoder which projects graphs into
a low-dimensional latent space, and a decoder which maps the latents back to
the original space. Although these VAEs come in many flavours [2, 3, 4, 9], most
VAEs for graphs employ graph neural networks (GNNs) [10, 2] for the encoder.

Recently, many works [11, 12, 13, 14, 15] have shown that simple GNNs can
achieve competitive performance on a variety of graph learning tasks. In the
context of GraphVAEs, Salha et al. [16] empirically demonstrate that one-hop
linear encoders perform similarly to architectures based on multi-layer GNNs [2].

In this paper, we improve GraphVAEs [2] encoders by leveraging multi-hop
neighborhood information, which we extract using multiple simplified graph con-
volutions (SGCs) [11]. We propose two ways of combining such information:
concatenating SGC outputs and summing them up. Because these GraphVAEs
are mainly designed to handle reconstruction tasks (e.g., link prediction), we
also extend our analysis to deterministic autoencoders (AEs).

Empirical results demonstrate that our methods outperform GraphVAEs for
link prediction in popular benchmark datasets (Cora, Citeseer and Pubmed).
Our methods also outperform the one-hop linear model in [16], which indicates
that combining multi-hop information is beneficial for reconstruction tasks.

105

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

2 Background

We represent a graph G with n nodes as a pair (A,X) where A ∈ {0, 1}n×n is
a symmetric adjacency matrix and X ∈ Rn×d is a node feature matrix. Addi-
tionally, we define the diagonal degree matrix D of G such that Dii :=

∑
j Aij .

We denote the normalized graph Laplacian of G as ∆ := I −D−1/2AD−1/2.

2.1 Graph variational autoencoders

GraphVAEs [2] comprise a decoder and an encoder network, with respective pa-
rameters Φ and Θ. The former parameterizes the likelihood function pΦ(Gi|Zi)
of a graph Gi given its latent representation Zi ∈ Rni×d. The latter parame-
terizes the variational distribution qΘ(Z1:S) =

∏S
i=1 qΘ (Zi|Gi) which approxi-

mates the Bayesian posterior:

pΦ(Z1, . . . ,ZS |G1, . . . , GS) ∝
S∏
i=1

pΦ(Gi|Zi)p(Zi), (1)

where p(Z1), . . . , p(ZS) are user-defined priors.
We learn (Θ,Φ) by minimizing the Kullback-Leibler divergence between the

variational distribution and the posterior in Equation 1:

(Θ?,Φ?) = argmin
Θ,Φ

DKL [qΘ (Z1:S |G1:S) ‖pΦ(Z1:S |G1:S)]

, argmin
Θ,Φ

EqΘ
[
log

qΘ (Z1:S |G1:S)

pΦ(Z1:S |G1:S)

] , (2)

which is seemingly intractable but can be efficiently solved by maximizing the
Evidence Lower-BOund (ELBO):

L (Θ,Φ) =
S∑
i=1

EqΘ(Zi|Gi) [− log pΦ (Gi|Zi)] +DKL [qΘ (Zi|Gi) ‖p(Zi)] (3)

Kipf and Welling [2] model qΘ(Zi|Gi) as a Gaussian N (µi,diag(σi)) and
use two two-layer Graph Convolutional Networks (GCNs) [17] for the encoder.
One encoder network computes µi ∈ Rni×d given Gi, while the other outputs
σi ∈ Rni . The likelihood pΦ(Gi|Zi) is modeled as an element-wise Bernoulli
distribution over the adjacency Ai, with logits ZiZ

ᵀ
i .

2.2 Simple Graph Convolutions

We can use the eigendecomposition of the graph Laplacian matrix to define
convolutions in graph domains [18]. Let U and Λ denote the eigenvectors and
eigenvalues of the graph Laplacian ∆, respectively. The graph Fourier transform
of a d-channel signal X ∈ Rn×d on the vertices of the graph is given by X̂ =

106

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

UᵀX, and its inverse is X = UX̂. Using these operations, we define the graph
convolution between a signal X and a filter g as

g ?X = U ((Uᵀg)� (UᵀX)) = UĜUᵀX (4)

where Ĝ = diag(ĝ1, ĝ2, . . . , ĝn) comprises the spectral filter coefficients ĝi.
In practice, the non-parametric approach in Equation 4 is undesirable, since

it comprises a large number of parameters and does not produce localized fil-
ters [19]. A solution is to approximate the filter with polynomials of the Lapla-
cian eigenvalues, leading to polynomials of the Laplacian since UΛkUᵀ = ∆k.

Let H(0) = X; at layer `, a generic polynomial spectral GNN computes

H(`) = ReLU

(
K∑
k=0

∆kH(`−1)Θ
(`)
k

)
, (5)

where Θ(`) ∈ Rd`−1×d` are the coefficients of the spectral filters. The output
H(L) ∈ Rn×dL after L layers comprises representations for each node in G.

Wu et al. [11] simplify the layer in Equation 5 in four ways: i) adopting

K = 1; ii) setting Θ
(`)
0 = 0 and Θ

(`)
1 = I; iii) removing the ReLU function;

iv) replacing ∆ by the normalized adjacency matrix Ã = I −∆ after adding
self-loops to the graph. Stacking L layers and applying a linear transformation,
we obtain the simplified graph convolution (SGC):

H = ÃLXΘ. (6)

3 Multi-hop linear graph (variational) autoencoder

To improve the performance of GraphVAEs, we modify their encoders by i)
replacing the two-layer GCNs with SGCs; and ii) using SGCs of different order
to effectively extract multi-hop information. We refer to this method as multi-
hop linear graph variational autoencoder (ML-GVAE). In addition, we propose
combining the multiple SGCs in two-ways: summing and concatenating their
outputs. The resulting linear encoders are:

ML-GVAE (sum): µi =
C∑
c=1

Ãc
iXiΘ

(c)
µ , logσi =

C∑
c=1

Ãc
iXiθ

(c)
σ ; (7)

ML-GVAE (cat): µi =
∥∥∥C
c=1
Ãc
iXiΘ

(c)
µ , logσi =

∥∥∥C
c=1
Ãc
iXiθ

(c)
σ ; (8)

where ‖ denotes concatenation.
Despite the linear nature of our encoder, it is worth mentioning that optimiz-

ing ML-GVAEs is still a non-convex problem. The main issue here is arguably
the relationship between the (Gaussian) variational distribution and σi’s. To
control the loss landscape, we also propose deterministic versions of ML-GVAE,

107

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

which does not depend on noise injection:

ML-GAE (sum): Zi =
C∑
c=1

Ãc
iXiΘ

(c)
µ ; (9)

ML-GAE (cat): Zi =
∥∥∥C
c=1
Ãc
iXiΘ

(c)
µ . (10)

Another usual alternative to control the loss landascape is to replace σi’s
by a scalar hyper-parameter σ and use isotropic Gaussians for the variational
distribution. In this case, we only need a single encoder network. Note that,
unlike VAEs, deterministic autoencoders can not generate samples. Nonetheless,
this is not an impairment for link prediction, in which reconstruction is the goal.

4 Related works

Kipf and Welling [2] first introduce GraphVAEs as a framework to learn node
latent variables and handle reconstruction tasks. Building upon this model,
Salha et al. [16] show that a simple linear one-hop model outperforms deeper
GCN-based auto-encoding architectures. In this regard, our work extends their
model by combining multi-hop information. Curiously, we found that removing
the 1-hop information (the one they use) produces the best results (see Sec. 5).

The idea of combining multi-hop information to improve graph models is not
novel. For instance, SIGN [20] proposes concatenating multiple pre-computed
diffusion matrices for fast inference in node classification tasks. Our work lever-
ages this idea to graph generative models in reconstruction tasks. Behind all
these methods, it is the idea that we can build simple yet effective GNNs for a
variety tasks. This is related to the fact the many real-world tasks fall under the
homophily setting, in which neighboring nodes have similar features or labels.
In these cases, simple low-pass filtering designs often yield good results [21, 11].

5 Experiments

Setup. We follow the same setup as Salha et al. [16]. Therefore, we evaluate
our proposals in link prediction tasks and use the Cora, Citeseer and Pubmed
citation networks as benchmarks. We run experiments on two versions of each
dataset: with and without node features. For the latter, we substitute the feature
matrix by an identity matrix.

We compare our methods against Graph(V)AE with GCN-based encoders [2],
and Linear (V)AE with one-hop encoders [16]. Our methods combine 2-, 3-, and
4-hop neighborhood information (C = 4 and we do not use 1-hop information).
Moreover, we use the Area Under the ROC Curve (AUC) and Average Precision
(AP) as metrics. We repeat the experiments 20 times. For each method, we
report mean and standard deviation as results. Our PyTorch implementation is
available at: https://github.com/ErikJhones/MLGVAE.

108

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

https://github.com/ErikJhones/MLGVAE

Model
Cora w/ features CiteSeer w/ features PubMed w/ features

AUC AP AUC AP AUC AP

GCN VAE (L = 2) 91.6±0.92 92.6±0.91 90.7±1.01 92.0±0.97 94.6±0.51 94.8±0.42

GCN VAE (L = 3) 90.5±0.94 91.7±0.88 88.6±0.95 90.2±0.81 92.7±1.02 93.3±0.91

GCN AE (L = 2) 91.2±0.78 92.4±0.71 89.7±1.39 90.3±1.62 96.2±0.36 96.2±0.25

GCN AE (L = 3) 89.1±1.18 90.9±1.01 87.3±1.74 89.6±1.52 94.8±0.41 95.4±0.26

Linear GVAE 92.5±0.97 93.6±0.68 90.6±0.86 91.8±0.77 94.9±1.10 94.5±0.89

Linear GAE 92.0±0.93 93.3±0.86 91.5±1.17 92.9±0.97 95.8±0.20 95.8±0.17

ML-GVAE (sum) 93.1±0.35 93.5±0.77 92.8±0.61 93.3±0.74 98.1±0.92 98.3±0.16

ML-GVAE (cat) 93.5±0.74 94.2±0.17 93.6±0.83 93.5±0.87 96.7±0.29 96.7±0.11

ML-GAE (sum) 92.4±0.72 93.4±0.67 92.2±0.96 93.2±0.72 97.1±0.67 97.2±0.12

ML-GAE (cat) 93.7±0.37 94.1±0.35 93.4±0.95 94.0±0.53 96.9±0.70 97.0±0.34

Table 1: Link prediction using node features. ML-G(V)AEs consistently out-
perform GCN-based Graph(V)AE and Linear G(V)AE in all cases.

Model
Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

GCN VAE (L = 2) 84.5±1.05 88.8±1.04 77.5±1.24 82.8±0.91 84.1±0.31 88.0±0.22

GCN VAE (L = 3) 84.5±1.42 87.6±1.08 79.3±1.78 83.7±1.13 84.1±0.47 88.2±0.31

GCN AE (L = 2) 84.8±1.10 88.4±0.82 78.2±1.69 83.8±1.24 82.5±0.64 87.4±0.38

GCN AE (L = 3) 84.6±1.22 87.6±1.11 78.6±1.74 82.8±1.43 83.3±0.98 87.6±0.68

Linear GVAE 84.7±1.24 88.2±1.02 78.9±1.34 83.3±0.99 84.0±0.28 87.9±0.25

Linear GAE 83.2±1.13 87.5±0.95 77.0±1.81 83.0±1.25 81.8±0.32 87.5±0.28

ML-GVAE (sum) 85.5±0.21 89.1±0.12 78.6±0.35 83.5±0.43 90.1±0.42 91.5±0.54

ML-GVAE (cat) 86.3±0.51 89.8±0.61 79.9±0.49 84.7±0.71 86.8±0.22 88.1±0.34

ML-GAE (sum) 85.2±0.16 88.9±0.58 78.3±0.16 83.4±0.05 82.1±0.56 87.9±0.18

ML-GAE (cat) 84.8±0.12 89.1±0.32 77.8±0.18 83.2±0.11 83.7±0.58 88.1±0.63

Table 2: Link prediction without node features. Our multi-hop linear encoders
obtain greater AUC and AP for all datasets. The performance gap is particularly
greater on Pubmed.

Results. Table 1 and Table 2 show that ML-GVAE (sum) and ML-VAE (cat)
outperform the other methods for all datasets. The performance gap between
ML-G(V)AEs and competitors is particularly noticeable in the PubMed dataset,
with and without features. A possible explanation is that our methods are the
only to leverage information from neighborhoods of size three and four, since
GCN-based (V)AEs and Linear G(V)AEs employ two-layer GCNs as encoders.

6 Conclusion

This papers proposes ML-GVAE, an improved version of GraphVAE [2]. By
combining multiple SGCs [11] for the encoder, our method is capable of lever-
aging multi-hop information. Results show that ML-GVAE consistently outper-
forms GraphVAEs and its simplified variant [16], Linear GVAE, in link prediction
tasks. Additionally, our method is arguably faster than GraphVAEs, since we
can pre-compute propagated features before training/test.

109

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

In future work, we will evaluate ML-GVAE in a larger number of large-
scale benchmarks. Additionally, Ghosh et al. [22] show that the noise injection
(σi’s) in VAEs can be replaced by directly regularizing the latent embeddings.
Therefore, we believe that combining ML-GVAE with similar tricks can lead to
efficient models with simple loss landscapes. We will explore this direction in
future work.

References

[1] D. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

[2] T. Kipf and M. Welling. Variational graph auto-encoders. In NeurIPS Workshop on
Bayesian Deep Learning, 2016.

[3] M. Simonovsky and N. Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In ICANN, 2018.

[4] A. Grover, A. Zweig, and S. Ermon. Graphite: Iterative generative modeling of graphs.
In ICML, 2019.

[5] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang. Adversarially regularized graph
autoencoder for graph embedding. arXiv:1802.04407, 2018.

[6] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang. Mgae: Marginalized graph autoencoder
for graph clustering. In CIKM, 2017.

[7] R. Berg, T. Kipf, and M. Welling. Graph convolutional matrix completion.
arXiv:1706.02263, 2017.

[8] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In KDD, 2016.

[9] W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In ICML, 2018.

[10] A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Trans-
actions on Neural Networks, 20(3):498–511, 2009.

[11] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph
convolutional networks. In ICML, 2019.

[12] Q. Huang, H. He, A. Singh, S. Lim, and A. Benson. Combining label propagation and
simple models out-performs graph neural networks. In ICLR, 2021.

[13] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional
networks. In ICML, 2020.

[14] F. Errica, M. Podda, D. Bacciu, and A. Micheli. A fair comparison of graph neural
networks for graph classification. In ICLR, 2020.

[15] D. Mesquita, A. H. Souza, and S. Kaski. Rethinking pooling in graph neural networks.
In NeurIPS, 2020.

[16] G. Salha, R. Hennequin, and M. Vazirgiannis. Simple and effective graph autoencoders
with one-hop linear models. In ECML-PKDD, 2020.

[17] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

[18] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep
learning: Going beyond Euclidean data. IEEE Signal Processing Mag., 34(4):18–42, 2017.

[19] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral networks and locally connected
networks on graphs. In ICLR, 2014.

[20] E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. M. Bronstein, and F. Monti. SIGN:
scalable inception graph neural networks. Arxiv:2004.11198, 2020.

[21] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in
graph neural networks: Current limitations and effective designs. In NeurIPS, 2020.

[22] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Scholkopf. From variational to
deterministic autoencoders. In ICLR, 2020.

110

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

	Introduction
	Background
	Graph variational autoencoders
	Simple Graph Convolutions

	Multi-hop linear graph (variational) autoencoder
	Related works
	Experiments
	Conclusion

