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Abstract. In this work, we introduce a novel application for the au-
tomatic estimation of Functional Ambulatory Category (FAC) based on
deep Echo State Networks (ESNs). FAC is a clinical scale for assessing the
gait ability used in post-stroke rehabilitation and, in general, for disease
monitoring. In this application, the estimation is performed automatically
by analyzing signals gathered from wearable sensors (located on both tib-
iae, pelvis, trunk and head) during the execution of a walking test. This is
performed by analysing the whole time-series through the DeepESN model
without preprocessing. The experimental results show that the use of a
deep recurrent neural network allows the model to exploit the richness
contained in the whole raw temporal signal improving the performance
w.r.t. the shallow recurrent model. Overall, our approach obtained 0.37
of mean absolute error with a maximum error of 0.78 resulting very accu-
rate in the classification of the gait ability through the estimation of the
FAC value. Considering the experimental results obtained, the proposed
approach represents a good baseline for medical applications based on the
automatic estimation of the FAC scale.

1 Introduction

Functional Ambulatory Category (FAC) is a clinical scale considered a valid,
reliable and responsive tool for assessing the gait ability [1]. The FAC scale is
used especially in post-stroke patients and in general for assessing the severity
of diseases and for rehabilitation monitoring. However, like most clinical ques-
tionnaires/scales, the FAC requires dedicated and expert medical staff to be
administered and its reliability and validity strongly depends on the operator’s
experience. In this context, machine learning models are good candidates in
supporting gait analysis for medical purposes. For instance, the analysis of data
gathered from wearable sensors during a walking test through machine learning
approaches has been successfully tested for pathology classification, gait pattern
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analysis and rehabilitation monitoring [2, 3]. Up to our knowledge, even if sim-
ilar approaches based on the automatic estimation of Berg Balance Scale were
previously pursued [4, 5], no earlier studies targeted an automatic estimation of
the FAC scale values from wearable sensors data.

To fill this gap, we propose here a new machine learning approach for the
automatic estimation of the FAC scale from raw temporal signals based on Re-
current Neural Networks (RNNs). In particular, we consider the Reservoir Com-
puting (RC) [6] paradigm which showed good abilities to address raw and noisy
temporal signals achieving good results in clinical scale estimation [5] through
the use of Echo State Networks (ESNs). Recently, within the RC paradigm, the
introduction of Deep Echo State Networks (DeepESN) [7] showed a good ability
to represent complex multiple time-scales dynamics, outperforming the standard
ESN in Parkinson’s Disease diagnosis [8].

Based on such considerations, in this application we analyzed the whole tem-
poral data gathered from body-mounted wearable inertial sensors during the 10
minute walking test through a DeepESN model. We evaluate the FAC estima-
tion approach on a dataset composed of raw signals gathered during the walking
test of 42 stroke patients. Moreover, we assess the relevance of layered recurrent
architectures in this application by comparing the DeepESN (the multi-layered
version) model with the standard ESN (the 1-layered version). Finally, we show
how we can improve the performance of the estimation through the ensembling
of DeepESN instances.

2 Deep Echo State Networks

The DeepESN [7] model is an extension of Leaky Integrator ESNs (LI-ESNs)
[9]. It is a deep recurrent architecture (see Fig. 1 for an example) composed of a
hierarchy of NL recurrent layers (called reservoirs). The input at time step t is
denoted by u(t) ∈ R

NU , while, the state of the l-th reservoir layer at time step
t is denoted by x(l)(t) ∈ R

NR . In the following formulas we avoid the bias term
for the ease of notation. The state of the network of the first layer is computed
as:

x(1)(t) = (1− a(1))x(1)(t− 1) + a(1)tanh(Winu(t) + Ŵ
(1)

x(1)(t− 1)), (1)

while for layers l > 1, the state of the network is computed as:

x(l)(t) = (1− a(l))x(l)(t− 1) + a(l)tanh(W(l)x(l−1)(t) + Ŵ
(l)
x(l)(t− 1)), (2)

Fig. 1: An example of DeepESN architecture.
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where Win ∈ R
NR×NU is the input weights matrix, Ŵ

(l)
∈ R

NR×NR is the
recurrent weights matrix of layer l, W(l) ∈ R

NR×NR is the inter-layer weights
matrix that connects the layer l − 1 to the layer l, a(l) is the leaky parameter
of layer l and tanh is the hyperbolic tangent which represents the activation
function. The global state of the DeepESN is computed by concatenating all the
layer states x(t) = (x(1)(t), . . . ,x(NL)(t)) ∈ R

NLNR .

The values of matrices Win and {W(l)}NL

l=2 are randomly initialized from

a uniform distribution and re-scaled such that ‖Win‖2 = σ and ‖W(l)‖2 = σ

where σ is the scaling factor of the input weights and the inter-layer weights.

The values of matrices {Ŵ
(l)
}NL

l=1 are initialized according to the Echo State
Property of DeepESNs [10].

In the task considered in this work, the output of the DeepESN is computed
for each input sequence. First, the mean state mapping is computed as: χ(s) =
1
n

∑n

t=1 x(t), where s = [u(1), ...,u(n)] is an input sequence of length n. Second,
the output is computed as follows: y(s) = Woutχ(s), where Wout ∈ R

NY ×NLNR

is the matrix of the readout layer weights. The readout weights are trained by
means of pseudo-inversion or ridge regression [9, 6] as in standard RC.

In the following the LI-ESN (equivalent to a 1-layered version of DeepESN)
is referred as ESN.

3 DeepESNs for Functional Ambulation Estimation

Here, we experimentally assess the proposed DeepESN approach for Functional
Ambulation Category (FAC) estimation. Moreover, we compare the DeepESN
(the multi-layered model) with the standard ESN (the 1-layered model) in order
to show the effectiveness of layering in RNN models in this kind of applications.
The dataset was acquired at Fondazione Santa Lucia [11]. It is composed of 185
sequences characterized by raw signals gathered during the walking test of 42
stroke patients. Each temporal sequence is associated to a FAC value measured
by the clinical staff during the execution of the walking test. In this work, we
considered three of the possible FAC values (i.e. 3, 4 and 5). The value represents
the walking ability (the more the better) of the patient. Our approach consists in
estimating the FAC value through the DeepESN model starting from a raw signal
gathered during the walking test performed by the patient. The FAC estimation
is performed by ridge regression on the FAC values similarly to other approaches
based on the estimation of clinical scales [5]. Each time step of a sequence is
a vector of 65 values gathered from 5 wearable sensors (located on both tibiae,
pelvis, trunk and head). For each sensor, we consider the accelerometer (3
components), the gyroscope (3 components), the magnetometer (3 components)
and the orientation quaternions (4 components). In our approach, the DeepESN
is fed by consider the whole raw signal without preprocessing. Fig. 2 a) and 2
b) show an excerpt of the signals gathered from the trunk accelerometer (x, y
and z components) at each time step during the execution of the walking test
by a patient with FAC 3 (Fig. 2 a)) and a patient with FAC 5 (Fig. 2 b)).
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Note that this kind of data is rather noisy, then the estimation of FAC without
preprocessing needs an approach suitable for noisy time-series.
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Fig. 2: An excerpt of the signals gathered from the trunk accelerometer (x, y
and z components) at each time step during the execution of the walking test
by a patient with FAC 3 (Fig. a)) and a patient with FAC 5 (Fig. b)).

We evaluated the model through a double cross validation approach with 2
inner folds (validation sets) and 3 outer folds (test sets). Each validation and
test fold is composed of 18 time series gathered from 6 patients with balanced
labels. Following the approach proposed by [5], the evaluation of the model is
performed on patients which are not present in the training set. In this way,
the generalization ability of the model does not depend on the patient. For the
model selection, we optimized the hyperparameters through a random search by
considering the spectral radius ρ(l) from a uniform distribution in [0, 1], the leaky
integrator a(l) from a uniform distribution in [0, 1], the input norm σ(l) from
a logarithmic distribution in [10−4, 1] and the number of recurrent units NR

from a uniform distribution in [5, 100]. We considered a DeepESN with 10 NL

layers and the same number of NR units per layer. For the standard ESN (i.e.,
NL = 1), we considered the NR range [50, 1000] in the model selection in order
to have a fair comparison by considering the same number of total recurrent
units of the DeepESN model. In the following we use the mean absolute error
(MAE) as metrics to evaluate the performance of the models. In the following
experiments, for each hyper-parametrization we generated 5 random instances
that we call guesses. Then, the results are averaged on such guesses.

In order to improve the performance from a point of view of the FAC appli-
cation, we exploited the variability provided by different guesses of the selected
model by means of an ensemble approach. The ensemble model is obtained by
averaging the output of the guesses of the DeepESN model. Moreover, we eval-
uated the classification ability of the model considering the 3 values of the FAC
scale (3, 4 and 5) as 3 classes. Then, the output of the model is converted to
the class 3 if y(s) < −τ , to the class 5 if y(s) > τ and to the class 4 otherwise.
The τ value is optimized in the validation set by performing a search grid in the
range [0.05, 0.1, 0.15, ..., 1].
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4 Experimental Results

Here, we present the results obtained by the considered models on the FAC
task. Table 1 shows the comparison between DeepESN and ESN. The DeepESN
outperforms ESN obtaining a test MAE of 0.39 while ESN achieved a test MAE
of 0.59. These results highlight that the ability of layering in RC architectures

Table 1: Test MAE (mean (standard deviation)) obtained by DeepESN and ESN
on FAC task.

Architecture Test MAE
DeepESN 0.39(0.033)
ESN 0.59(0.026)

in providing a hierarchical temporal representation of the input sequences can
be exploited to improve the model performance in this kind of applications.

Here we show the experimental results obtained by the ensemble approach
by using the selected DeepESN model. Table 2 shows the test MAE, test clas-
sification accuracy (Test Acc), rate of the class 3 (3PR), 4 (4PR) and 5 (5PR)
obtained by DeepESN performing the ensemble approach.

Table 2: Test MAE, classification accuracy (Acc), positive rate of the class 3
(3PR), 4 (4PR) and 5 (5PR) obtained by DeepESN performing the ensemble
approach.

Architecture Test MAE Test Acc 3PR 4PR 5PR
DeepESN 0.37 77.93% 83.33% 66.67% 83.33%

By using the ensemble approach the estimation improves from 0.39 to 0.37
test MAE. The maximum test MAE obtained by the model is 0.78. This means
that the model estimations are closer to the correct FAC value for all cases in
the considered experimental setting. From a classification point of view the en-
semble model is able to obtain 77.93% of accuracy. In particular, by considering
a test set which contains only the class 3 and 5 with a threshold τ = 0 the
model achieved the 100% of accuracy (in the considered experimental setting).
Therefore, the proposed approach is remarkably able to discriminate between
mild and severe stroke patients.

5 Conclusions

In this work, we proposed a novel approach for the automatic estimation of
functional ambulation based on DeepESN model. We considered the whole time
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series produced by the wearable sensor during the walking test without the use
of preprocessing. The experimental assessment is performed on a dataset com-
posed of 185 time-series of raw signals from 42 stroke patients. The DeepESN
outperforms the standard ESN (the 1-layered) on FAC estimation task. This
highlights the ability of deep recurrent models to exploit the richness of infor-
mation presents in the raw signal. Moreover, the ensemble approach achieved a
remarkable classification ability in the discrimination between mild and severe
stroke patients. To the best of our knowledge, this work represents the first
attempt to develop an approach based on machine learning for the automatic
estimation of the FAC scale using gait measures with wearables. The proposed
solution represents a preliminary study, toward intelligent systems based on
wearable devices able to provide early detection of gait alterations. Such ca-
pability let us envision mass screening potentials of the joint use of machine
learning and wearables in the field of gait analysis. In future works, it could be
interesting to investigate this novel problem with other models and more data
in order to improve the results interpretation and the estimation ability.
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