
Privacy-Preserving Kernel Computation For
Vertically Partitioned Data

Mirko Polato, Alberto Gallinaro and Fabio Aiolli

University of Padova, Department of Mathematics, Italy

Abstract. In this paper, we propose a secure and privacy-preserving
technique for computing dot-product kernels on vertically distributed data.
Our proposal is based on secure multi-party computation which provides
theoretical guarantees on both security and privacy. We also provide a
practical application of the method by adapting a kernel-based collabora-
tive filtering technique to the federated setting. An extensive experimental
evaluation shows the effectiveness of the proposed approach.

1 Introduction

Federated learning [1, 2] (also known as collaborative learning) is a machine
learning technique in which the training process is computed across multiple
decentralized parties (e.g., devices or servers) holding private local data samples
that are never exchanged with other parties. The general idea consists of training
local models on the main local private data, and then sharing the parameters
(e.g., the weights of a neural network) to generate a global model (usually on
a centralized server). Thus, the learning is decentralized, but the global model
stays on the server which has only a view of the model and not the data that
generated it. It is important to underline that Federated learning differs from
distributed learning in terms of the assumption made on the data. Distributed
machine learning aims at parallelizing the computation, but the data are shared
between the different parties. In this paper, we propose a secure and privacy-
preserving method to compute dot-product kernels in the context of federated
learning. The proposed method does not perform learning per se, but it can be
injected in any federated kernel-based techniques.

Privacy-preserving computation of the kernel matrix has been studied almost
exclusively in the context of Support Vector Machine (SVM). In [3], Rubinstein
et al. proposed two variants of privacy-preserving SVM one that uses finite
feature mapping (specifically, translation-invariant kernels), and one with infinite
feature mapping (as in [4]). In the former case, the authors propose to add noise
to the data for computing the kernel in a privacy-preserving manner. They also
showed a bound of the empirical risk of adding such noise. In the latter case,
privacy is achieved by using Raimi and Recht [5] random projection. However,
both strategies are not suited for our purposes for two reasons: (i) data are highly
sparse and adding noise work best with highly dense data as claimed in [6], and
(ii) computing random projection (that is based on Fourier Transform) would
require high computational power to the user. A similar idea based on random
kernels has been proposed in [7] which seems only applicable to L1 SVM. In [6],
a secure set intersection cardinality approach [8] is proposed. The method is

11

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

highly scalable and very easy to compute. Roughly speaking, users compute the
entries of the linear kernel matrix using sets intersection that is made private
via a particular scheme of one-way hashing functions applied in sequence by the
users. The approach is really interesting, however, it fails anytime a user drops
out.

Differently from the just mentioned techniques, in this paper we consider a
scenario in which data are vertically distributed across the users, that is, each
user owns a specific set of features of the training instances. We propose to
compute the kernel using a protocol that is robust in case of dropping users. Be-
sides the theoretical guarantees, we also show a collaborative filtering application
adapting CF-KOMD [9], a kernel-based recommender system, to the federated
setting.

2 Secure kernel computation

In this work we assume a (federated) scenario in which the data is vertically
distributed, that is, each client owns a different set (possibly a single one) of
features of the same data instances. This is pretty common, for example, in IoT
systems, or more generally in sensors networks where different sensors/devices
collect specific types of data (features) of the same overall set of observations.
Another example is collaborative filtering based recommenders systems in which
the data owned by a user are the ratings given (implicitly or explicitly) to the
items and hence a user represents a single items’ feature.

For simplicity, we stick with the assumption that each client/user has a single
feature for all the instances, but the following considerations apply also with an
arbitrary number of features. Let X ∈ Nn×m be m training instances with
n integer features. Let X be vertically partitioned over a set of users U of
cardinality n, and let xu ∈ N1×m be the vector of features owned by the user u.
Then, the linear kernel can be computed as

K =
∑
u∈U

x>u xu → Kij =
∑
u∈U

(
x>u xu

)
ij

=
∑
u∈U

xuixuj . (1)

where x>u xu ∈ Nm×m is the outer product. From (1), it is evident that the
exact linear kernel can be computed as the sum over the outer product of the
feature vectors of the users. Since we are in a federated setting, users can not
directly share their contribution because it would mean sharing their private
data. However, we can take advantage of the secure aggregation protocol [10]
(SAP) to securely compute the sum

∑
u∈U x

>
u xu.

In this protocol, we assume that all parties (i.e., server and clients) possess
pair-wise secure communication channels with (relatively) ample bandwidth.
Following SAP [10], we define the following steps: (i) One-time pad masking:
this is the core step of the whole protocol which guarantees perfect privacy, but it
fails in case of dropping users; (ii) Dropped users recovery: adds a recovery
mechanism in case of dropping users; (iii) Double masking: adds a further
level of security; (iv) Communication speed improvement: improves the

12

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

communication’s efficiency. In the following, we will detail only the first step
(i.e., One-time pad masking) since the rest of the protocol is essentially the same
as described in [10].

2.1 One-time pad masking

Using their secure channels, each pair of users first agree on a matched pair
of perturbations. Specifically, every user u samples, for each other user v, an
integer (sparse) matrix Suv ∈ [0, R)m×m, for some R, and exchange it with its
counterpart Svu. Then, each user u computes the perturbation Puv = Suv−Svu,
with Puu = 0, and noting that Puv = −Pvu(mod R). Once the perturbations
are computed, each user sends to the server her contribution Yu = x>u xu +∑

v∈U Puv. Finally, the server sums up the perturbed user contributions to
obtain the kernel

K =
∑
u∈U

(
x>
u xu +

∑
v∈U

Puv

)
=
∑
u∈U

(
x>
u xu +

∑
v∈U

Suv − Svu

)
=
∑
u∈U

x>
u xu(mod R).

The correctness is guaranteed since “opposite” perturbations cancel out.
One-time pad masking guarantees perfect privacy for the users as well since
the users’ contributions are masked until the final aggregation. The secure ag-
gregation protocol is also designed to handle the potential drop of users during
the execution of the aggregation. The details are described in [10]. Nonetheless,
if users drop during the aggregation, it means that the computed kernel is an
approximation of the full kernel (some users/features are missing). However, as
we will see in the experimental section, if a reasonable number of users partici-
pate in the computation, the kernel approximation is good enough to not harm
the overall kernel machine effectiveness.

2.2 Computing dot-product kernels

Even though we showed how to secure aggregate only the linear kernel, this is
enough to allow the computation of any dot-product kernel, i.e., a kernel that is
a function of the dot-product between the inputs. As discussed by [11], under
mild conditions, any dot-product kernel of the form κ(x, z) = f(〈x, z〉) can be
seen as a dot-product polynomial, that is κ(x, z) =

∑+∞
d=0 ad〈x, z〉d for some

specific coefficients ad. Thus, the server, starting from the linear kernel, can
easily compute any dot-product polynomial. Dot-product kernel is a big family
of kernels that contains many of the most used kernels, such as the RBF kernel,
the polynomial kernel, and the boolean kernels [12].

3 FedCFK: Federated CF-KOMD

We now introduce the Federated CF-KOMD [9] algorithm, dubbed FedCFK,
that extends CF-KOMD to the federated paradigm. CF-KOMD is a kernel-
based recommender system that learns (independently for each user) a ranking
over the items. The ranking is induced by the scores computed solving an

13

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

optimization problem based on the kernel between the items that the user has
rated. CF-KOMD fits our setting since users own their ratings (items’ features)
and the features (ratings) are binary, i.e., xu ∈ {0, 1}m.

Let us divide the FedCFK learning process into two distinct phases: (1)
kernel matrix computation; (2) users’ optimization and scores computation. To
compute the kernel (phase 1) in a distributed and privacy-preserving fashion,
FedCFK employs the protocol described in Section 2. Phase 2 instead fits in the
federated framework straightforwardly: the optimization can be independently
computed on device by the clients without the need of sharing their ratings.

3.1 Server-side kernel computation

As previously mentioned, usually not all users participate in a single round of
secure aggregation harming the quality of the approximated kernel. However,
the server can continuously improve its kernel estimate. Specifically, after the
secure kernel aggregation, the server computes K̂ where each entry K̂ij can be
interpreted as (an estimate of) the number of users who rated both i and j.

The server can improve the quality of K̂ w.r.t. the optimal K by keeping the
maximum value of each entry K̂ij (that is a better estimate of the similarity
between i and j) anytime a new secure kernel computation takes place. In the

long run, these incremental improvements guarantee that the kernel K̂ becomes
closer and closer to K.

3.2 Kernel request-response

An important aspect that needs to be discussed is that each user only needs
a portion (usually really small) of the overall kernel between items. Once the
server has notified users that the kernel is ready, the users have to ask for the
portion of the kernel needed to solve their optimization problem. For computing
the items’ score, a user only needs a “stripe” of the kernel corresponding to her
positive items. However, the user cannot ask directly for those specific rows,
otherwise, she would disclose her ratings to the server. To address this problem,
a user asks for the rows corresponding to a bigger set of items. To avoid any
possible leak of information, the user can also perform a noisy request by not
including some of her positive items. The idea is to always ask for different sets
of items and keeping track of the most up-to-date kernel’s rows. In this way, the
server can not infer any information about the users’ ratings, and users can rely
on a sufficiently updated kernel matrix.

4 Empirical evaluation

In this section, we assess the quality of FedCFK against its non-federated coun-
terpart CF-KOMD. We evaluate the performance of the methods on MovieLens
100k (ml-100k1) and MovieLens 1M (ml-1m2). The performance of the methods

1https://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/

14

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

is measured using standard ranking metrics, namely AUC, normalized Discount
Cumulative Gain (nDCG), and recall. For the last two metrics, we use a cutoff
value of 100. In both datasets, the test set size is 10%.

The first set of experiments aims at showing the robustness of FedCFK when
the kernel is computed on a single aggregation round. Table 1 and 2 shows
the performance varying the number of users participating in the round. The
reported results are an average of 10 repetitions.

Model % of users AUC nDCG@100 recall@100
CF-KOMD 100 0.808 0.207 0.325
FedCFK 90 0.808 0.206 0.325
FedCFK 70 0.801 0.196 0.308
FedCFK 50 0.797 0.194 0.314
FedCFK 30 0.772 0.169 0.270

Table 1: Performance of FedCFK on ml-100k.

Model % of users AUC nDCG100 recall@100
CF-KOMD 100 0.823 0.129 0.191
FedCFK 90 0.822 0.128 0.190
FedCFK 70 0.821 0.126 0.188
FedCFK 50 0.819 0.127 0.189
FedCFK 30 0.813 0.127 0.190

Table 2: Performance of FedCFK on ml-1m.

From the tables is evident that FedCFK is robust w.r.t. the number of users
participating in the single round of the kernel computation. When users are less
than 50% the performance sensibly decreases but still remains reasonably close
to the one of CF-KOMD.

In the second set of experiments, we assess the quality of the server side kernel
approximation in terms of the mean squared difference between the normalized
version of K and K̂ computed over an increasing number of rounds in which a
random set of users (with a size between 1% and 50%) participate.

The plots show that in 100 rounds the kernel approximations are good even
if in each round less than 50% of the users participate.

5 Conclusions

We propose a secure and privacy-preserving method to compute dot-product
kernels on vertically partitioned data. Our methodology is based on the secure
aggregation protocol that provides theoretical guarantees for both security and
privacy. One limitation of our proposal is the nature of the features that have
to be integers. However, discretization techniques may help in mitigating this
limitation.

15

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

0 50 100 150 200
10−3

10−2

of updates

m
ea

n
sq

u
a
re

d
d
iff

.

(a) ml-100k.

0 50 100 150 200
0

1

2

·10−2

of updates

m
ea

n
sq

u
a
re

d
d
iff

.

(b) ml-1m.

Fig. 1: Normalized kernel approximation over 200 rounds.

References

[1] Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. In NIPS Workshop on Private Multi-Party Machine Learning, 2016.

[2] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Agüera y Blaise
Arcas. Communication-efficient learning of deep networks from decentralized data. AIS-
TATS, pages 1273–1282, 2017.

[3] Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning in a
large function space: Privacy-preserving mechanisms for svm learning. Journal of Privacy
and Confidentiality, 4(1), Jul. 2012.

[4] Haoran Li, Li Xiong, Lucila Ohno-Machado, and Xiaoqian Jiang. Privacy preserving rbf
kernel support vector machine. BioMed Research International, 2014, 2014.

[5] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Pro-
ceedings of the 20th International Conference on Neural Information Processing Systems,
NIPS’07, pages 1177–1184, Red Hook, NY, USA, 2007. Curran Associates Inc.

[6] Hwanjo Yu, Xiaoqian Jiang, and Jaideep Vaidya. Privacy-preserving svm using nonlinear
kernels on horizontally partitioned data. In Proceedings of the 2006 ACM Symposium on
Applied Computing, SAC ’06, pages 603–610, New York, NY, USA, 2006. Association for
Computing Machinery.

[7] Olvi L. Mangasarian and Edward W. Wild. Privacy-Preserving Random Kernel Clas-
sification of Checkerboard Partitioned Data, pages 375–387. Springer US, Boston, MA,
2010.

[8] Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with application to
association rule mining. J. Comput. Secur., 13(4):593–622, July 2005.

[9] Mirko Polato and Fabio Aiolli. Exploiting sparsity to build efficient kernel based col-
laborative filtering for top-n item recommendation. Neurocomputing, 268:17 – 26, 2017.
Advances in artificial neural networks, machine learning and computational intelligence.

[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggrega-
tion for federated learning on user-held data. In NIPS Workshop on Private Multi-Party
Machine Learning, 2016.

[11] Michele Donini and Fabio Aiolli. Learning deep kernels in the space of dot product
polynomials. Machine Learning, pages 1–25, 2016.

[12] Mirko Polato and Fabio Aiolli. Boolean kernels for collaborative filtering in top-n item
recommendation. Neurocomputing, 286:214 – 225, 2018.

16

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

