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2 - Université catholique de Louvain, INMA/ICTEAM
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Abstract. Feed-forward networks can be interpreted as mappings with
linear decision surfaces at the level of the last layer. We investigate how
the tangent space of the network can be exploited to refine the decision in
case of ReLU (Rectified Linear Unit) activations. We show that a simple
Riemannian metric parametrized on the parameters of the network forms a
similarity function at least as good as the original network and we suggest
a sparse metric to increase the similarity gap.

1 Introduction

We consider feed-forward neural networks with ReLU activations to examine
how the network’s final representation space connected to the gradient struc-
ture of the network. Our motivation is twofold: recently discovered knowledge
about ReLU networks [1, 2, 3] and recent results about higher order optimiza-
tion methods [4]. In a way, many of the existing machine learning problems can
be investigated as statistical learning problems, therefore information geometry
[5] plays an important role. It was shown in [6] that over the parameter space
of a neural network we can often determine a Riemannian manifold based on
an error or loss function, moreover the tangent bundle on specific Riemannian
metrics, e.g. Fisher information, has unique invariance properties [7].

Our main hypothesis is that in feed-forward ReLU networks we can utilize
the relation of the parameters and the output due the homogeneity property
of the activation functions. Therefore, we investigate the gradient structure of
the network output w.r.t. the parameters and exploit the space induced by
the partial derivatives together with a metric as a representation of data points.
Albeit the inner product space of the tangent bundle is quadratic, there are well-
defined underlying structures in the tangent space specific to ReLU networks.
In this paper we introduce several similarity functions [8] based on a block-
diagonal, sparse metric and we inspect how they relate to the similarity induced
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by the network itself by measuring the similarity gap, the difference in expected
similarity between point pairs with the same label and point pairs with different
labels.

1.1 Related work

The geometrical properties of the underlying loss manifold of neural networks
was used as a general framework for optimization in classification and generative
models [6]. Furthermore, Martens and Grosse [4] approximated Amari’s natural
gradient [5] for feed-forward neural networks with block partitioning the Fisher
information matrix by exploiting the structure of the network. The partial
gradients were used as representations in classification given a known generative
probability density function, e.g. through an approximated Fisher kernel, in
[9] where the authors approximated the metric with the diagonal of the Fisher
information matrix. In [10] the authors learned a metric with a neural network
over the partial gradients w.r.t. the parameters, while in [11] the Neural Tangent
Kernel based on the gradients is used to study the training of the network in
the function space. It is not only the partial gradient w.r.t. parameters that
carry important properties. For example in [12] the authors experimented with
the norm of the input-output sensitivity, the Frobenius norm of the Jacobian
matrix of the output w.r.t. input in case of simple architectures. Recent results
show that under simple assumptions the maximal “capacity” (representational
power) of deep ReLU networks is related to the arrangement of the polytopes
in the input space [1] and to the properties of transition between linear regions
[13, 3] instead of the exact number of polytopes with non-zero volume. Our
last ingredient is Balcan and Blum’s theory of similarity functions [8], which we
will use as our foundation to show that we can define similarity functions in the
gradient space that are at least as good similarity functions as the output of the
network.

1.2 Notations

Let f : Rd×R|θ| → R be a feed-forward ReLU network, as a function of both the
input data and the weights, containing L hidden layers, N neurons trained for
solving a classification problem P for some data distribution D. The activation
function is ReLU: h(x) = max(0, x), x ∈ R. Let Nk denote the number of

neurons in the k-th layer and let hkθ(x) ∈ RNk denote the output of the k-th
layer for a given input vector x and a fixed set of weights θ. Denoting the
weight vector after the last hidden layer, the discriminative layer, by θL we have
fθ(x) = θTLh

L
θ (x). We denote the set of parameters as θ and the parameters

of the k-th layer with θk. The actual output of our model is sgn(fθ(x)) =
sgn(θTLhθ(x)), i.e the network can be interpreted as a linear separator acting on

Im(hθ) ⊆ RNL , the image of the nonlinear mapping hθ : Rd → RNL . Following
[1], we define an activation pattern with assigning a sign to each neuron in the
network, A = {al; l = 1, .., N} ∈ {−1, 1}N . For a particular input we refer
A(x; θ) = {sgn([hθ(x)]l; l = 1, .., N} as the activation pattern assigned to an
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input x. An activation region with the corresponding fixed θ and A is defined
as R(A; θ) := {x ∈ Rd|sgn([hθ(x)]l) = al}, the set of input assigned to the
same activation pattern. In comparison, linear regions are the input regions
where the function defines different linear regions.We define tangent vectors as
the change in the output with a directional derivative of fθ(x) in the direction

of gθ(xi) = ∂fθ(x)
∂θ

∣∣
x=xi

: (Dgθ(xi)f)(θ) = d
dt [fθ(x) + tgθ(xi))]|t=0. We will refer

∇ : Rd → R|θ| as the tangent mapping of input at θ: ∇θfθ(x) := ∂fθ(x)
∂θ . We

denote the partial gradient vectors with gθ(x) ∈ R|θ|. We denote the label of x
by l(x), e.g. in case of binary classification l(x) ∈ {0, 1}.

2 Similarity functions

First, we state the following definition from [8] which will be the measure of our
similarity functions:

2.1. Definition. A K(x, y) is a weakly γ-good similarity function for a learning
problem P if:

Ex,y∼P [K(x, y)|l(x) = l(y)] ≥ Ex,y∼P [K(x, y)|l(x) 6= l(y)] + γ. (1)

Note, the strong version of good similarity function says that a K(x, y) is a
good similarity function if 1− ε probability mass of the examples are on average
more similar to examples of the same category than to examples of another
category. We consider the weakly good similarity because in this case we may
investigate how the gap changes in case of a finite sample. We refer to γ as the
similarity gap.

We define the similarity function of the discriminative layer as KfLθ
(x, y) =

hLθ (x)ThLθ (y) and the similarity function of the network asKfθ (x, y) = fθ(x)fθ(y).
Now, let us consider the inner product in case of the tangent mapping. Before
we argue about the metric in the tangent space we take a closer look on the
structure of the Hessian in case of feed-forward ReLU networks. By definition
the Hessian Hθ of the function induced by the network for a single output is a

|θ| × |θ| sized matrix with [Hθ(x)]ij = ∂2[fθ(x)]
∂θi∂θj

,∀i, j ∈ {1, .., |θ|} which in our

case is equal to the sum over the paths from the input to the output node where
both θi and θj are present therefore if we split the Hessian into sub-blocks, where
only elements from the same layer are present, these sub-blocks will be diagonal.
This property suggest us to seek for a metric where the parameters of a layer in
these sub-blocks may collide if necessary. Therefore we suggest a simple metric
Mθ ∈ R|θ|2 with [Mθ]ij = δlf (i),lf (j)θiθj where δi,j is one if i = j and zero other-
wise and lf (i) is the index of the layer of the i-th parameter. We define our new
similarity function, the block diagonal similarity as

KMθ
(x, y) = gθ(x)TMθgθ(y) =

∑
i,j∈θ×θ

δlf (i),lf (j)θiθj [gθ(x)]i[gθ(y)]j
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where we utilized that the metric has a Cholesky decomposition as it is positive
semi-definite. One of the most important properties of the block-diagonal simi-
larity function is that in case of a single output the similarity function is equal,
up to a constant, to the network output as∑

i,j∈θ×θ

δlf (i),lf (j)θiθj [gθ(x)]i[gθ(y)]j =
∑

i,j∈θ×θ

δlf (i),lf (j)fθ(x)fθ(y)

=
L∑
k=1

Kfθ(x,y) ≈ O(Kfθ (x, y)).

Since Kfθ (x, y) =
∑
i∈θL θ

2
i [hθ(x)]i[hθ(y)]i the following holds for the block-

diagonal similarity:

ωLO(KfLθ
(x, y)) ≤ KMθ

(x, y) ≤ ω∗LO(KfLθ
(x, y))

where ωL = mini∈θL θ
2
i and ω∗L = maxi∈θL θ

2
i . Note, the similarity values are

not necessarily positive.
Now, we decompose the gap and suggest a modified metric to increase the

gap of the block-diagonal similarity function. As the norm of the gradient vectors
highly affects the gap, we normalize to avoid linear increases in the gap. First,
for simplicity we estimate the expectation Ex,y∼P [KMθ

(x, x′)|l(x) = l(y)] for a
single layer and for a single label therefore the expectation is

|θ|∑
i=1

|θ|∑
j=1

Ex,x′∼P [
[gθ(x)]iθiθj [gθ(x

′)]j

‖M1/2
θ gθ(x)‖‖M1/2

θ gθ(x′)‖
]

≈ 1

|T (+)|2
∑

t1,t2∈T (+)×T (+)

1

‖ĝθ(xt1)‖‖ĝθ(xt1)‖

|θ|∑
i=1

|θ|∑
j=1

[gθ(xt1)]iθiθj [gθ(xt2)]j

=
∑

i,j∈θ×θ

1

|T (+)|2
∑

t1,t2∈T (+)×T (+)

[gθ(xt1)]iθiθj [gθ(xt2)]j
‖ĝθ(xt1)‖‖ĝθ(xt1)‖

=
∑

i,j∈θ×θ

[ψ̂+
Mθ

]ij

where we denote the set of examples with label “+” as T (+), a subset of known

examples T and M
1/2
θ gθ(x) with ĝθ(x). Similar calculation can be applied if the

labels are different thus

γMθ
= Ex,y∼P [KMθ

(x, x′)|l(x) = l(y)]−Ex,y∼P [KMθ
(x, x′)|l(x) 6= l(y)]

≈
∑

i,j∈θ×θ

[ψ̂
(+)
Mθ

]ij − [ψ̂
(−)
Mθ

]ij =
∑

i,j∈θ×θ

[ψ̂Mθ
]ij .

Therefore if we consider multiple layers, where [Mθ]ij = 0 if lf (i) 6= lf (j), the
similarity gap can be approximated as

γMθ
≈

∑
i,j∈θ×θ

δlf (i),lf (j)[ψ̂Mθ
]ij =

∑
k∈1,...,L

∑
i,j∈θk×θk

[ψ̂Mθ
]ij .
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Note, with |T | → ∞ the error of our approximation converges to zero with

probability one, moreover this convergence is true for every element in ψ̂Mθ
.

An additional consequence that we can partition the elements of the similarity
gap into disjoint sets and examine each independently. Observe, the elements
of ψ̂ ∈ R therefore let us define for every pair their “importance” in the gap
as impi,j = max{0, [ψ̂Mθ

]ij}. By setting the elements in the metric with low
or negative importance we can define a sparse block-diagonal similarity with an
additional step, normalization. However, our new metric can have the same
dimensions as the original block-diagonal. Thus we can argue that according
to impi =

∑
j impij ,∀i ∈ θ we can select the most important parameters and

delete rows and columns associated with less important parameters and form
the elementwise block-diagonal metric.

So far we assumed arbitrary input and do not take advantage of the gradient
graph of the network. To show a case when the normalized sparse block-diagonal
similarity has better similarity gap than the original normalized block-diagonal
similarity we will assume that our input is a subgaussian random vector [14] with
zero mean and variance one, e.g. the input is element-wise standard normalized.
Additionally, observe that in ReLU networks the partial gradients can be ex-

pressed as gθ(x) = Sθ(x)x where Sθ(x)i,j = ∂2fθ(x)
∂θ∂x |θ,x a d×|θ| sized matrix and

inside an activation region Sθ(x) = Sθ(A(x)) is identical for each x ∈ A thus
gθ(x) = Sθ(A(x))x. Due the complexity of the proof and the page limit we only
mention that, following Theorem 2.1 in [15], the norm of the elementwise sparse
vector for points in the activation region A is concentrated as for all δ > 0

P (‖S∗θ (A(x))x‖22 > Tr[S∗θ (A(x))S∗θ (A(x))T ](1 + 4δ);x ∈ A) ≤ e−δ

where S∗θ (A(x)) is the same as Sθ(A(x)) without the removed rows and columns
and therefore the similarity gap in case of the normalized elementwise sparse

block-diagonal similarity is related to the ratio Tr[Sθ(A(x))Sθ(A(x))T ]
Tr[S∗θ (A(x))S∗θ (A(x))T ]

.

We experimented on the CIFAR-10 dataset [16] with a simple feed-forward
network with five layers1. We ranked the parameters per layer according the
elementwise block-diagonal metric and deleted the parameters with low “impor-
tance”. Results in Fig. 1 indicate that the gap can be increased but further,
more detailed experimentation needed to understand how the gap is actually
increasing.

3 Conclusions

In this paper we defined similarity functions over ReLU networks based on the
gradient structure and investigated the similarity gap. Furthermore, we intro-
duced a measure to rank the parameter pairs in the network according to their
importance in the similarity gap. In the future we plan to extend our work
to other network structures as our findings were limited to feed-forward fully
connected ReLU networks.

1Experiments are available at https://github.com/danielracz/gradsim
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Fig. 1: Distribution of the network output, the elementwise sparse block-diagonal
and the block-diagonal similarity values.
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