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Abstract. A data-oriented approach including all deep learning methods
is usually suffered by overfitting. A regularizer has been, from the begin-
ning, introduced to resolve this problem. Inspired by Generative Adver-
sarial Network (GAN), our framework generates the adversarial loss to pe-
nalize a segmentation model like a regularizer. We introduce temperature
as a regularizer when calculating Least-Square losses. Temperature affects
losses in both a discriminator and a generator in our DCGAN framework.
Our experiment suggests L2 losses on top of the original LSGAN losses for
optimization. This new regularizer using temperature improves semantic
Segmentation accuracy both in Pixel accuracy and mean Intersection-of
Union.

1 Introduction

The Convolutional Neural Network [1] model complexity and the performance in
many tasks are proportional, resulting in more computation power and memory.
There have been trials for reducing workload or generating efficient networks.
MobileNet models [2] have been developed to reduce the number of parameters
and memory usages. Inside well-known structures such as [3][4], there have
been trials to improve partial structures [5] without increasing the number of
parameters greatly.

Our work starts with the desire to improve given models for semantic seg-
mentation. One of most popular approaches in semantic segmentation is using
GAN [6] having 2 parties and they are in a dispute; generator and discrimi-
nator. Our observation shows that a discriminator gets a chance to penalize a
generator by measuring fake samples against real ones. Temperature provides
a modified probability map, which requires only an additional softmax calcula-
tion without any network structure change. Therefore, it works as a regularizer
and our experiments with different temperatures in both the segmentation loss
and the adversarial loss show it avoids overfitting and therefore improves the
segmentation accuracy.

2 Related Works

Generative Adversarial Network: Started from the first GAN paper [6]
which introduces the adversarial network design between a generator and a dis-
criminator, various GAN loss functions are introduced such as minimax loss
strategy used in DCGAN [7], Least-Square loss from LSGAN [8], or Wasserstein
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Loss from WGAN [9][10]. GAN is used in several applications including Seman-
tic Segmentation where cross-entropy losses and adversarial losses are typically
used. DCGAN loss converges to the specific value and WGAN loss diverges to
the high negative values, while LSGAN loss does not have this problem. All dis-
criminator losses from GAN systems are easily saturated, blocking a generator
having time to be trained. So we are motivated to find the best loss function
and how to slow down the discriminator training.
Temperature: Temperature generates different softmax probabilities from log-
its used in knowledge distillation [11][12]. Temperature was used to control the
probability map transferred to another probability map by training with two or
multiple models also in semantic segmentation [13][14]. Rather than methods
using multiple models, we use temperatures in softmax layers with a small dis-
criminator for reducing the computational power.
Regularization: Dropout [15] and Dropconnect [16] are popular regularizers
Loss penalizing is also another common way such as weight decay [17] or L1 and
L2 Regularization [18] widely used in supervised learning tasks. Those methods
produce versatile model structures in each training step, resulting in preventing
overfitting.

3 Adversarial Framework in Semantic Segmentation

In semantic segmentation, a model processes RGB images for generating the
corresponding probability maps. Each channel has probabilities that each pixel
indicates whether its label is the specific class or not. With feature maps, the
model calculates the categorical cross-entropy loss for updating its weights by
backpropagation. Eq. (1) is how to calculate the loss in a general way.
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The feature map has 4 dimensions: Batch size (N), Height (H), Weight (W),
Channel (C). We obtain yh,w,c = 0 or 1 by converting the groundtruth labels to
one-hot labels. L2 (Least-Square) Regularization Loss can be applied to prevent
the model from overfitting. λ is L2 weight decay rate and wi should be a trainable
weight.
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Eq. (2) is the objective loss function of DCGAN [7] suitable for the only one
sigmoid output of a discriminator for classification. X is the one-hot encoded
groundtruth label map, and Z is the RGB minibatch image pixels. However, the
DCGAN discriminator loss saturates and cannot penalize the generator (seg-
mentation network) properly. Thus, we instead decide to use LSGAN [8] loss,
keeping the DCGAN structure because LSGAN discriminator is more appropri-
ate for single-class or multi-class classification tasks.
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Fig. 1: The Adversarial Framework Structure. We apply both temperatures
TG and TD on the feature maps generated from the segmentation network and
calculate losses. (TG to Lseg and Ladv, TD to LD)

Fig. 1 shows our framework for adversarial loss for regulating and penalizing
the segmentation network inspired by [14]. We calculate the least-square losses
in Eq. (3) and Eq. (4). We aim to backpropagate LD in discriminator training.
Ladv is added to Lseg with a weight α. In addition to Ladv, we want to find
whether L2 regularization properly optimizes the segmentation network. Thus,
we have three primary parameters in Section 4: λ, TG, and Td.
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LG = Lseg + αLadv (5)

4 Evaluation

4.1 Training details

We select the segmentation network as FCN [19] and ResNet-50 [4]. The back-
bone network of FCN-8s is VGG-16 [3]. Also, we utilize ImageNet [20] pretrained
weights in training with VOC2012 augmentation dataset [21][22] and CityScapes
dataset [23]. We use a DCGAN discriminator with Batch Normalization layers.

We apply the same learning rate lr = 5·10−3 for all cases with Cosine learning
rate with Warmup [24] epoch 5, and Mixed Precision which enables larger batch
size and higher resolution by training in 16-bit Floating-Point (FP16). For the
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discriminator, we apply the learning rate lrd = 10−7 in FCN cases and lrd =
5 · 10−8 in ResNet-50 cases, with α = 0.05 in most cases except for FCN-8s-C

(α = 0.1). Also, we use Momentum=0.9 in Batch Normalization layers. Due
to the limit of 8GB VRAM from RTX 2070 Super GPU, we set the crop size
416× 416 for training with batch size 16.

4.2 Results

L2 regularization is commonly used in training many CNN models as a regu-
larizer. However, we want to explore whether it also properly works in training
from pretrained weights. In the following tables, ’-V’ and ’-C’ mean that given
networks are trained with VOC2012 and CityScapes dataset, respectively.

Model λ = 0 λ = 10−4 λ = 2 · 10−4 λ = 5 · 10−4

ResNet-50-V 90.62/61.97 90.60/61.88 90.59/61.71 90.69/61.94
ResNet-50-C 92.50/58.57 92.47/58.57 92.74/59.44 92.85/60.35
FCN-8s-V 92.82/69.26 92.72/69.02 92.78/68.94 92.51/68.14
FCN-8s-C 94.31/67.03 94.30/66.94 94.31/66.88 94.10/65.52

Table 1: The L2 Regularization Effect (pAcc/mIoU)

Except for the ResNet-50-C case, L2 regularization does not improve the
accuracy in Semantic Segmentation. We set the most highest accuracy case to
the baseline in the Table 1.

Model Baseline Adversarial Td = 0.5 Td = 2
ResNet-50-V 90.62/61.97 90.68/62.03 90.68/61.86 90.74/62.37
ResNet-50-C 92.85/60.35 92.83/60.16 92.64/59.35 92.83/60.17
FCN-8s-V 92.82/69.26 92.83/69.33 92.79/69.10 92.78/69.36
FCN-8s-C 94.31/67.03 94.32/67.30 94.29/67.36 94.30/67.10

Table 2: TD Test (TG = 1)

Model Baseline Adversarial TG = 0.5 TG = 2
ResNet-50-V 90.62/61.97 90.68/62.03 90.88/62.54 90.52/61.72
ResNet-50-C 92.85/60.35 92.83/60.16 93.02/60.75 92.70/60.22
FCN-8s-V 92.82/69.26 92.83/69.33 92.90/69.82 92.72/68.96
FCN-8s-C 94.31/67.03 94.32/67.30 94.36/67.42 94.28/67.38

Table 3: TG Test (TD = 1)

Table 2 and Table 3 indicate the accuracies with using our adversarial frame-
work with TD and TG. In Table 2, we can observe that the accuracy increase
is inconsistent in terms of discriminator temperatures. Moreover, ResNet-50-C
case shows the training without the discriminator overwhelms other trials. In
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contrast, TG = 0.5 cases in Table 3 are the best result in terms of pAcc and mIoU,
among the all trials in both tables above. To sum up, the TG = 0.5/TD = 1 case
strengthens the adversarial framework with the optimal λ values.

Model Train Params D params Ttrain TAdv

ResNet-50-V 23.6M 2.79M 2.6mins 4.1mins
ResNet-50-C 23.6M 2.78M 2.6mins 3.0mins
FCN-8s-V 134.5M 2.79M 6.8mins 9.2mins
FCN-8s-C 134.4M 2.78M 3.5mins 4.5mins

Table 4: Training Information of Two Models

Table 4 shows the number of parameters and training times. With the smaller
number of discriminator parameters, the training time is increasing no more
than 3 minutes per epoch. The time increment comes from the factors such as
passing both the groundtruth feature map and the predicted feature map into
the discriminator and the backpropagation in the segmentation model.

5 Conclusion

In this paper, we introduced the adversarial framework with temperatures. Our
experiments concatenate a discriminator to a segmentation model and apply
temperatures to both the discriminator loss and the adversarial loss, resulting
in the increased model accuracies on top of L2 regularization. Our results show
that penalizing the segmentation model with the adversarial loss prevents mod-
els from overfitting. Even though our backbone models are not state-of-the-art,
our approach is consistent and efficient, in terms of improvement and time con-
sumption, respectively. In future work, we will evaluate our methods in various
environments and investigate more efficient feature-based regularization meth-
ods.
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