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Abstract. Many supervised machine learning tasks, such as future
state prediction in dynamical systems, require precise modeling of a fore-
cast’s uncertainty. The Multiple Hypotheses Prediction (MHP) approach
addresses this problem by providing several hypotheses that represent pos-
sible outcomes. Unfortunately, with the common l2 loss function, these
hypotheses do not preserve the data distribution’s characteristics. We pro-
pose an alternative loss for distribution preserving MHP and review rele-
vant theorems supporting our claims. Furthermore, we empirically show
that our approach yields more representative hypotheses on a synthetic
and a real-world motion prediction data set. The outputs of the proposed
method can directly be used in sampling-based Monte-Carlo methods.

1 Introduction

Machine learning is a highly popular method for various prediction tasks such as
vehicle trajectories [1], video frame prediction [2] or energy demand forecasting
[3]. An accurate model of the inherent, aleatoric uncertainty of the prediction
is often crucial.
A common approach to characterize the uncertainty is to predict a continu-
ous distribution, e.g., in Mixture Density Networks (MDN) [4]. However, in
some cases, it is beneficial to represent the uncertainty through a discrete set
of hypotheses. For example, when learning a dynamics model of a complex and
non-linear system, exact probabilistic inference is intractable and the sample
approximation is used instead. Possible future system states are represented by
a set of random particles from the distribution and can be used for Monte-Carlo
simulation, e.g., in [1]. A network that directly predicts multiple hypotheses elim-
inates the need for a stochastic sampling step. Moreover, a well-arranged set
of hypotheses can be a better representation of an underlying density than an
equally sized set of random samples from that distribution.
In this paper, we name the desired properties of such hypotheses sets and provide
precise definitions. Our main contribution is a new loss function that enables a
neural network to approximately meet these requirements and output multiple
hypotheses, more accurately representing the underlying data density.

523

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



2 Multiple Hypotheses Prediction (MHP)

Classical machine learning models map a feature vector x ∈ Rm to a label vector
y ∈ Rn using a parametric function f , e.g., a neural network (NN), such that
f(x) = y. The Multiple Hypotheses Prediction (MHP) approach proposed by
Rupprecht et al. [5] features a model, which yields a multitude of N possible
outcomes yi, i = 1, . . . , N for a single input feature vector x instead,

f (x) = [y1,y2, . . . ,yN ] .

Training such a model requires a loss function to be minimized. As usual, the
training data consists of K tuples of the form

(
x(k),y(k)

)
k=1,...,K

. Therefore, a

loss function is needed that assigns a cost value to a vector of output hypotheses
f
(
x(k)

)
of the model while relying only on the single observation y(k). The

authors of [5, 6] propose using the distance to the closest hypothesis as loss

L
(
f(x(k)), y(k)

)
= min

i=1...N
d
(
yi(x

(k)), y(k)
)
,

where d is an arbitrary distance function. This loss function is sometimes re-
ferred to as Winner-Takes-it-All (WTA) loss [7], because only the best hypothesis
defines the loss. It implicitly prevents hypotheses from collapsing into a single
point and encourages a diverse set of hypotheses. With a specific function d, we
denote it as d-WTA loss. Minimizing the loss on the entire training set is equiv-
alent to optimizing the expected distance to the closest hypothesis. A common
choice for d is the squared error, also known as l2-loss, which is proposed in the
original paper [5] and used in applications of the method [7].

3 The Distribution Preserving Approach

Although the WTA loss can be used with any distance function, its choice will
have a defining impact on the arrangement of the resulting hypotheses. For use
in Monte-Carlo algorithms, we regard the following two properties as desirable:
First, the hypotheses must preserve characteristics of the underlying label dis-
tribution P (y), e.g., expectation and higher moments, at least in the limiting
case N → ∞. We omit the condition on the input x at first. A more formal
description is provided in Property 3.1, which is adapted from [8, Theorem 7.5].

Property 3.1 Let a stochastic label y have a continuous probability measure P
and let (YN )N∈N , YN ⊂ Rn, |YN | = N be a series of sets with each set represent-
ing N discrete hypotheses returned by a discretization method of P on Rn. The
method is distribution preserving if and only if for every continuous, bounded
test function b : Rn → R the following limit is satisfied:

lim
N→∞

1

N

∑
yi∈YN

b(yi) = Ey∼P [b(y)] .
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(a) Classical MHP
(l2-WTA)

× not dist. preserving
X reg. distributed

(b) distribution preserving
MHP (ours)

X dist. preserving
X reg. distributed

p

(c) N = 150 random
samples

X dist. preserving
× not reg. distributed

Fig. 1: Sets of N = 150 hypotheses (white dots) for the density p of P . The
size of the dots is proportional to the amount of data in the corresponding
Voronoi regions. With l2-WTA (a), the hypotheses are spread out too far, i.e.
the hypotheses’ variance does not match that of the distribution. Our method
(b) aims to be both distribution preserving and regularly distributed, whereas
random samples (c) are not regularly distributed.

Note that this definition is equal to the weak convergence of measures by the
Portmanteau theorem, but we chose this formulation as it is closer to our un-
derstanding of distributional properties. Second, the hypotheses need to be
regularly distributed, i.e., equally spaced locally and forming a regular pattern.

Property 3.2 Let (YN )N∈N be a series of sets with N discrete hypotheses by
a discretization method. The method yields regularly distributed hypotheses
if and only if for N → ∞, the shape and volume of Voronoi regions defined by
neighboring hypotheses tend to vary only infinitesimally.

In practice, this property is hard to verify and can only be proven for very special
cases (e.g., [9] claims that Voronoi cells form regular hexagons with l2-WTA in
two dimensions). Nevertheless, if the hypotheses fulfill properties 3.1 and 3.2, for
continuous densities there is an important implication: For a sufficiently large
number N , each Voronoi cell Vi,N , i = 1, ..., N will approximately contain an
equal share of data, i.e.

∫
Vi,N

dP ≈ 1
N . This can be seen as follows: Consider

a small ball B ⊂ Rn. The distribution preserving property enforces that the
hypotheses are correctly distributed globally, so B will approximately contain
J ≈ P (B)N hypotheses (use indicator b = IB in 3.1. to see this). If B is
sufficiently small, the density p will be almost constant on B due to its continuity.
The regular distribution property ensures that the space is equally partitioned
among the J hypotheses in the ball locally for a sufficiently large J , resulting in

a probability share of approximately P (B)
J ≈ 1

N for each hypothesis.
Figure 1a shows the optimal placement of hypotheses on a density with the
aforementioned l2-WTA loss function. This was achieved by directly minimizing
the expected loss value on samples of the depicted distribution without use of a
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NN. It becomes evident that the desired properties cannot be fulfilled because
the shares of data for each hypothesis differ by magnitudes. While the definitions
and the implication summarize our thoughts, the fact that the l2-WTA loss is
not distribution-preserving is already established. If p is the data density, the
resulting hypotheses in n dimensions will distribute according to a distribution
proportional to p

n
2+n and not to p itself [8, Theorem 7.5]. To overcome this, we

propose training the MHP model with a different loss function. Specifically, the
logarithmic distance

ldp(a, b) = log (‖a− b‖+ δ) , δ � 1

(“dp” for distribution preserving) preserves non-conditional distributions for
N →∞ when used with the WTA loss as claimed in [10] for continuous proba-
bility distributions under mild regularity requirements. δ is a small constant to
overcome numerical issues. Figure 1b shows the distribution of hypotheses that
is obtained if the ldp-WTA is optimized. Intuitively, the logarithmic distance
does not penalize outliers much compared to the l2 distance, which draws the
hypotheses towards outer but improbable points. This results in a hypotheses
set that is overly spread out for the l2-WTA. Our proposed loss is not so sensitive
to outliers and avoids this problem.
The optical impression and the evenly distributed shares of the data indicate that
our loss function also yields hypotheses which are highly regularly distributed.
Nonetheless, for the scope of this work, we do not provide a general proof. Our
contribution is to extend the result of [10] by using the proposed loss function
for backpropagation through a neural network and training of an MHP model
that can then represent hypotheses conditioned on a feature vector x.

4 Experiments

To validate the theoretical results and show the benefits of our method, we train
a distribution preserving MHP model on an artificial data set and on real-world
data and compare it to hypotheses that were obtained with the l2-WTA loss.
First, as an artificial example, we consider a call center and suppose an employee
asks every fifth costumer about his satisfaction with the service. Therefore,
we model the waiting time y ∈ R+ that passes between five successive calls
dependent on the time of day x. For simplicity, we assume it to be Erlang
distributed with the conditional probability

p(y|x) = Erlang (λ(x), 5) .

The interarrival times between successive calls are exponentially distributed with
rate λ(x) sinusoidally varying over the time of day x (see Figure 2a). We train an
MHP model with samples from the distribution, where first a time x is sampled
uniformly on the interval [6, 20] and y is subsequently drawn from the conditional
distribution. Our code is available at https://github.com/tleemann/dpmhp.
By using the ldp-WTA loss and backpropagating it through the network, we ob-
tain the hypotheses yi(x) shown in Figure 2b. They are spaced according to the
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(b) MHP model output (ldp-WTA)

Fig. 2: Arrival rate and hypotheses obtained for the call center example.
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Fig. 3: Further statistics computed on the models for the call center example.

data distribution, with high-density areas being covered denser. Figure 3 pro-
vides additional measurements. The distribution parameters as the conditional
expectation E [y|x] are well-preserved, whereas that value differs considerably
when using another model with identical hyperparameters trained with the l2-
WTA loss (Figure 3a). We observed a similar result for Var [y|x] (shown in
our code example). When drawing a large number of samples (105) and as-
signing them to the closest hypothesis, the shares are approximately equal for
the proposed method and vary highly when using l2-WTA, indicating that the
properties defined are not fulfilled (Figure 3b). Additional measurements and
different hypothesis counts can be found in our code.
To showcase the applicability of our approach to real-world data sets, we learn
a behavior model for traffic participants, enabling the prediction of future tra-
jectories inspired by [1]. The task features an 18-dimensional feature vector
x ∈ R18 describing the current traffic situation from a specific car’s perspective
and contains, e.g., its velocity and the distance to a preceding vehicle. Out of
these features, the goal is to predict labels y ∈ R2 with the vehicle’s next ac-
tion, a steering angle and a linear acceleration. We learn from approximately
K = 3 · 106 tuples (x,y) with 100 hypotheses.
We calculate the negative log-likelihood (NLL) of observations in the test set
with respect to a density estimated by the set of hypotheses. We use two den-
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sity estimators, a single normal distribution (Norm) and a kernel density esti-
mator (KDE). The results in Table 1 show that the distribution of the test set
is represented more accurately with the proposed ldp-WTA.

5 Conclusion and Outlook Model,
N=100

NLL
(Norm)

NLL
(KDE)

l2-WTA -0.80 -0.73
ldp-WTA -1.44 -1.33

Table 1: Results on the motion pre-
diction data set. NLL is normalized
by the number of samples in the test
set. Lower values indicate better fit.

We introduce a novel approach to gen-
erate a set of diverse hypotheses to rep-
resent uncertainty in supervised learning
problems. In contrast to the literature,
our method aims to preserve the char-
acteristics of the underlying data distri-
bution. As a consequence, the resulting
hypotheses provide insights on the con-
ditional distribution and can be directly
used in sampling-based algorithms such as particle filtering. Further research
can determine the impact on long-term prediction of dynamical systems and in
other surroundings such as Markov Decision Processes.
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