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Abstract. Privacy issues prevent data owner from improving Machine
Learning (ML) performance as it makes external collaborations binding.
To allow data sharing without confidentiality concerns, we propose in this
work methods to generate time series in a privacy preserving manner.
We combine the existing Generative Adversarial Networks (GAN) models
for time series namely TimeGAN [1], ClaRe-GAN [2] and C-RNN-GAN
[3] with differential privacy. This is achieved by changing their original
discriminator with a private discriminator that relies on the differentially
private stochastic gradient method (DPSGD) [4]. Our experiments show
that the developed methods - in particular TimeGAN and ClaRe-GAN -
outperform the existing and unique differentially private model for time
series of RCGAN [5] in terms of privacy and accuracy.

1 Introduction

In many medical or industrial domains, the lack of data and privacy concerns
prevent researchers from improving the efficiency of ML. In these cases, pub-
lishing synthetic privacy-preserving data that depict the behavior of the original
dataset, could enlarge the scope of ML’s applicability. There by, it will also
preserve their privacy.

Let’s consider a scenario, illustrated in Fig. 1, where data owners want to
improve the performance of ML in a specific use case by collaborating with some
external partners. For example, they want to find a better performing ML model
for some medical data or a model that correctly predicts the state of a machine.
In these cases, it will be enough to give the external partner some synthetic data
with the same reactivity to any ML model. Thus, it will not reveal rare diseases
that can be easily detected in the original dataset or some sensitive information
about the machine parameters or its properties e.g., times when the machines
where on/off. . . To this end, the data owner can use a privacy preserving version
of GAN to generate new anonymous data and can share it with the external
partner who will not have access to the original one.

GAN is a well-known technique to deal with the lack of data. It generates
new synthetic data by sampling from a learnt distribution Pg that approximates
the distribution of the real dataset Pr . One can assume that the generated sam-
ples differ from the original ones and don’t contain their sensitive information.
However, there is no guarantee that the generator by repeatedly sampling from
Pg will not reproduce the training dataset or generate sensitive ones.
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Fig. 1: Use Case Scenario: Data owners holding sensitive data can use a differ-
entially private version of GAN to generate new anonymous time series. These
data can be shared with external partners without confidentiality concerns and
both parts can work together safely.

Recently, developing differentially private GAN models for images attracted
a lot of researchers [6]. As a first attempt, DPGAN [7] proposed a differentially
private version of WGAN [8]. Later, an improved version of this method was
presented in Dp-GAN [9] and GANobfuscator [10]. On the other side, DP-
CGAN [11] focused on another problem namely the generation of anonymous
data and their corresponding labels. These models were designed to generate
images in a privacy preserving manner. However, as stated in [1], when the task
is to generate time series it is not sufficient to capture the distribution of the
real dataset. The real challenge is to capture the temporal dynamic between the
data point. Hence the previously described models cannot achieve the desired
performance for time series. A unique differentially private generative model for
time series was proposed by Esteban et al. while introducing RGAN [5]. Inspired
by them and motivated by the increasingly need for privacy-preserving data, we
will review in this work the existing generative models for time series and extend
them to eradicate the privacy concerns. Concretely, we will extend the state-
of-the-art GAN algorithms for times series namely -TimeGAN [1], ClaRe-GAN
[2] and C-RNN-GAN [3]- with a differential privacy component to pull out the
strengtheners and weaknesses of each method. Our approach relies on changing
their discriminators with a private discriminator that uses DPSGD [4] and on
tracking the spent privacy loss using the RDP accounting technique.

We conducted different experiments on a collection of publicly available
datasets from the UCR repository [12] with different number of classes and time
series length. We evaluate the results visually and computationally and assess
the usefulness and the privacy of the data generated by the deferentially private
models. Our experiments show that ClaRe-GAN and outperforms RCGAN in
terms of privacy and accuracy while TimeGAN achieves the best accuracies for
higher but still reasonable privacy values.
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2 Our Approach

In this work, we present a privacy preserving version for the sate-of-the-art GAN
models for time series data. As privacy model we use differential privacy [13].

Differential privacy aims at minimizing the influence and the effect of each
dataset’s instance. Intuitively, the outcome of an algorithm should be insensitive
to a small perturbation in the dataset. Given two identical datasets D and D′

differing in one single instance, a randomized algorithm M is (ε, δ)-differentially
private if for any subset of outputs S [13]:

P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S] + δ (1)

where ε and δ control the privacy, P is the randomness of the noise in the
algorithm and M(D) and M(D′) are the output of the algorithm M given the
dataset D and D′. Lower ε and δ values lead to stricter privacy guarantees.

The post-processing theorem states that any randomized mapping on an
(ε, δ)-differentially private algorithm is also differentially private:

Theorem post-processing [14] Given a randomized algorithm M : D → R
that is (ε, δ)-differentially private and an arbitrary randomized mapping f : R →
R′, f ◦M : D → R′ is (ε, δ)-differentially private.

Recently, a lot of researchers focused on finding a good generative model
for time series data generating diverse samples of high-quality. In this context,
different approaches have been proposed. While C-RNN-GAN [3] consists of
a Long-Short Term Memory (LSTM) generator and discriminator, RCGAN [5]
conditions both recurrent neural networks on an auxiliary information. A more
complex architecture was proposed by TimeGAN [1] equipped with an embed-
ding and a recovery function in addition to the classic GAN architecture. ClaRe-
GAN [2] focuses on generating time series for multi-class datasets by learning
the intra- and inter-class variation.

In this paper, we modify the architecture of the previously described gener-
ative models, in the following called Dp-TimeGAN, DP-CRNN-GAN and DP-
ClareGAN, to generate time series in a privacy preserving manner. This is
achieved by changing their original discriminators with a private discriminator
equipped with a differentially private stochastic gradient descent [4]. Two tech-
niques are used to achieve privacy namely clipping gradient and adding random
noise. During the training procedure, the per-example gradients of the discrimi-
nator loss is computed for the real and generated data. Afterwards, both values
are clipped to the minimum value between their L2-norm and a clipping value C.
The clipped gradients are summed up and Gaussian noise N(0, σ2C2) is added
where σ is noise multiplier. Based on the post-processing theorem [14], we guar-
antee that the use of the private discriminator in any generative model makes the
generator and all other architecture’s components (encoders etc..) private. The
spent privacy loss is computed using the RDP accounting technique [15] as it
enables a tighter privacy estimation than the moment accountant technique and
an easy computation of the privacy budget curve for a composite mechanism.
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3 Experiments

We evaluate the performance of the designed differentially private frameworks
visually and computationally. The computational evaluation is performed by
computing the test accuracy of Train on Synthetic and Test on Real (TSTR)
and Train on Real and Test on Synthetic (TRTS) [5]. TRTS denotes training a
ML classifier on the real data and reporting the test accuracy when the model
is tested on the synthetic ones. On the other side, TSTR denotes training a ML
classifier on the synthetic data and reporting the test accuracy when the model is
tested on the real ones. In both cases, the ML model is used to classify the time
series of the datasets. We test the developed differentially private GANs on a
collection of datasets from the UCR Repository[12] namely ItalyPowerDemand,
TwoLeadECG, FreezerRegularTrain, Yoga and DistalPhalanxTW with time se-
ries length varying between 24 and 426 and number of classes equal to 2 except
for DistalPhalanxTW where it is equal 5. Their performances are compared to
the existing differentially private GAN model for time series data of RCGAN. In
order to enable a fair comparison between all the frameworks, the same archi-
tecture is used for their generators and discriminators e 2-layers LSTM with 100
hidden units and the same number of iterations i.e., 100. For each framework,
we take the iterations with the best performance (best TSTR and TRTS values).
In contrast to the differentially private RCGAN and DP-ClareGAN, the labels
are not generated with the data for DP-TimeGAN and Dp-CRNN-GAN. We
label the data generated by these frameworks manually by finding the nearest
real time series. In all the experiments we use C = 0.3, σ = 0.3 and δ = 10−3.
For each dataset, we compute the spent privacy ε and assess the utility of the
generated time series. This is achieved by computing the tstr and TRTS accu-
racy values for 100 time series generated by each framework. As ML model we
use Random Forest [16]. In this set of generated time series all the classes of the
original dataset are represented with the same number of time series. Our main
goal is to find the best performing method i.e., the method that finds the right
balance between privacy and utility of the generated time series.

Fig.2 illustrates the test accuracies values of TRTS and TSTR for the differ-
ent datasets and different frameworks. The figures show that the best privacy
values are achieved by C-RNN-GAN. At the same time, its TSTR and TRTS
accuracies are really low. For all the datasets, ClaRe-GAN presents better pri-
vacy and TRTS TSTR values than the existing differential privacy algorithm of
RGAN. It is to be noted that ClaRe-GAN and RCGAN generate labeled data.
Especially, we noted a great improvement in terms of privacy for ItalyPowerDe-
mand TwoLeadECG and DistalPhalanxTW datasets. TimeGAN is character-
ized by high TRTS and TSTR values for higher - but still reasonable - privacy
values, by way of example 0.8 and 0.74 for TwoLeadECG dataset. Moreover,
it achieves better privacy values for DistalPhalanxTW and ItalyPowerDemand.
We have also noticed that the TSTR and TRTS values of RCGAN are around
0.5 which shows a limited utility of the generated data.

Fig. 3 illustrates the time series generated for the different dataset. TimeGAN
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and RCGAN generate noisy time series similar to the real dataset. The time
series generated by ClaReGAN differ from the real ones and are more private.
This corresponds to the privacy values presented in Fig. 2 i.e., for the TwoLead-
ECG dataset Clare-GAN ε = 147.2 compared to ε = 287.57 and ε = 442.15
for TimeGAN and RCGAN. C-RNN-GAN generates noise. This explain while
C-RNN-GAN achieves the best ε values in Fig. 2.

Fig. 2: Test accuracy values for TSTR and TRTS methods depicted in the left
and right sub-figure respectively. While a higher accuracy value denotes better
usefulness of the generated data, a lower ε value denotes a better privacy.

4 Conclusion

We presented in this work a method to generate time series in a private man-
ner by combining the existing GAN frameworks for time series with differential
privacy. We have shown that the developed frameworks achieve the desired
behavior and that DP-TimeGAN and DP-Clare-GAN outperforms the existing
differentially private RCGAN in terms of privacy and usefulness of the generated
time series. Our experiments show also that DP-CRNN-GAN achieves the best
privacy values. However, it also decreases drastically the quality of the generated
data. In the future, we plan to investigate other differential privacy frameworks
such as PATE.
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