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Abstract. The correlated weights neural layer is a generalization of the
convolutional layer constituting the core of CNN networks. The CWNL
layer takes advantage of weights correlated with coordinates of a neuron
and its inputs, calculated by a dedicated neural subnet. In this work, a
modified CWNL layer is proposed, which allows the parameterized spatial
manipulation (and any other global transformation) of a pattern. The
externally controlled CWNL layer can be used in existing neural network
architectures, giving them the ability of internal pattern transformation
without any modification of the training process.

1 Introduction

Convolutional neural networks (CNNs) are effective models which recently en-
joyed great success e.g. in image and video processing. The main benefit of using
CNNs is the reduced amount of parameters that have to be determined during
a learning process. The CNN can be regarded as a variant of the standard neu-
ral network which instead of using fully connected hidden layers, introduces a
special network structure, which consists of alternating convolution and pooling
layers. The layer performs the convolution operation using data from the weight
matrix - the kernel. A single weight in the convolutional layer (CNL) can be
defined as a function of the relative position of a neuron and its input:

w = f(P (I) − P (O)) (1)

where: P (O) - vector of a neuron spatial coordinates, P (I) - vector of spatial
coordinates of a neuron input. The function f() itself is actually a kernel matrix

indexed by difference P (I)−P (O). Its parameters are discontinuous and limited
by the kernel size. There have been some attempts to use more complex defi-
nitions of the weight function. For example, the deformable convolutional net-
works [3] allow to extend the spatial range of feature detection. Basing weights
on relative coordinates causes a loss of information about the absolute position
of a neuron and its inputs and prevents the implementation of the most popular
global pattern transformations (e.g. rotation, scaling, reflection). The solution
proposed in papers [1, 2] is to describe a weight of a connection between a neuron
and its input by a function using absolute spatial coordinates of the neuron and
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its input. The cost of this solution is the necessity to replace the implementa-
tion of the function by the matrix indexed with the relative coordinates of an
input and a neuron by some universal approximator. The papers propose the
possibility of using a neural subnet for this task, which in the learning process
determines the correlation between the spatial, absolute coordinates of the neu-
ron, its input, and the weight value. In both the CNL layer and the original
version of the CWNL layer, we are dealing with a static transformation, the
course of which cannot depend on additional external signals. In this paper, it
is proposed to modify the CWNL layer by extending the definition of the weight
function and including additional parameters, external to the layer, controlling
the work of the layer:

w = f(P (I),P (O),S(E)) (2)

where: S(E)-vector of external signals. One of the possible applications of such
a layer and the inspiration for starting work on its development was the emer-
gence of the concept of contextual networks [4]. The structure of these networks
includes modules whose task is to transform (in the main processing path) the
pattern signal based on parameters determined in the processing path parallel
to the main one. This solution allows the neural network to eliminate geomet-
rical deformations of the classified pattern and is a new technique for creating
transform-invariant classifiers. In the cited paper the operation itself is carried
out with the use of a mapping grid which has a limited range of possible trans-
formations.
A neural layer whose transformation can be externally controlled is the type of
layer used in steerable CNNs [5]. An important limitation of this solution is
basing it on a predefined (at the design stage) of types of transformations.
The CWNL layer with external control is a much universal component for the
parameterized spatial transformation, which should at least theoretically acquire
the ability to perform any transformation during the learning process using very
small training sets.

2 Model of the CWNL layer with external control

The structure of the correlated weights neural layer with external control is
shown in Fig. 1. The position of each layer input is described by the spatial
coordinates vector P (I), which size is compatible with the dimensionality of the
input data. The topology of the CWNL layer is compatible with dimensionality
and the size of its output pattern. Each of its neurons also has its own spatial,
absolute coordinates P (O). The output of the CWNL neuron is determined based
on the standard equation (3). The difference is that in the equation, instead of
the constant weights and the bias, their values are calculated dynamically by
dedicated neural subnets.
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Fig. 1: Schematic diagram of a correlated weights neural layer with external
control.

where: f() - activation function of the CWNL layer, y
(O)
i - output of i-th neuron

in the layer (output of the layer), y
(I)
j - j-th input of the layer, ωij0() - dynam-

ically calculated weight, βi0() - dynamically calculated bias, P
(O)
i - vector of

i-th neuron spatial coordinates, P
(I)
j - vector of spatial coordinates of j-th layer

input, S(E) - vector of external signals. The function ω() that dynamically cal-
culates the value of weights based on the coordinates of the neuron and the input
is implemented by a neural subnetwork with standard fully connected layers:
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where: ω
(m)
ijk - processed by the subnetwork signal of the dynamically calculated

weight for i-th neuron and j-th input (of the CWNL layer) in m-th subnet layer,
ϕ(m)() - activation function of m-th subnetwork layer, wkl

(ω,m)- weight of l-th

input of k-th neuron, b
(ω,m)
k - bias of k-th neuron. The input of the subnetwork

calculating weights ω
(0)
ijk is the union of the vector of the neuron coordinates

P (O), the vector of the layer input coordinates P (I) and the vector of external
control signals S(E).

A bias in a neural layer can be defined as a weight of an input with a constant
value of 1. In the case of a convolution layer, for one feature map, a single value
of the bias is repeatedly used for each neuron of this layer. The layer CWNL
allows to dynamically calculate the bias value based on the coordinates of the
neuron supplemented with external control signals. This task is performed by
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the second dedicated subnet. Since each neuron has only one bias value, the
subnet does not use the coordinates of the inputs:
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If activation functions of the CWNL layer and subnets layers are continuous
and differentiable, a learning process can be carried out based on any gradient
optimization technique [2].

3 Experiment

The experiment was to test the ability of the network with the CWNL layer to
carry out a multi-parameter affine transformation of images. The transformation
involved simultaneous translation, rotation and scaling. The research was based
on images of digits from the MNIST set. The input was the original digit image
and transformation parameters (standardized), the output was the transformed
image. To implement the above-mentioned transformation, a neural network
with a single CWNL layer was used. The layer used a sigmoidal activation
function due to the range of values of the returned pixels of the images (0-1).
The structure of the subnet generating weight values was I4-H32-H16-H8-O1.
The subnet calculating biases had layers I4-H8-H4-O1. The ELU activation
function of hidden layers prevents the vanishing gradient problem better than the
popular ReLU function and at the same time allows for a better representation
of dependencies in data [6]. The learning process was based on the minimization
of the binary entropy loss function. The classic RProp learning algorithm was
used, which proved to be effective for the developed network architecture than
the currently used algorithms. Figure 2 (the second section) shows the results
obtained for the above-described network for the training set with the size of
96 cases. For such a small number of the training set, the obtained quality of
the transformed images fully confirms the ability of the developed network to
implement this type of transformation. The unusual size of the set results from
the architecture of the computing cluster used and the way of parallelizing the
calculations by splitting the training set.

For comparison, a network with fully connected layers was used to implement
the same transformation. The structure of the network was modeled on the
structures of autoencoders using FC layers (supplemented with additional inputs
for control parameters), which confirmed their ability to process digits from the
MNIST set. Used neural network structure consisted of 5 hidden layers with the
ELU activation function and a sigmoid output layer, its layout: I(28*28+4)-
H128-H64-H32-H64-H128-O(28*28). The analysis of the obtained results (Fig.
2, the thrid section) allows us to conclude that the proposed network with FC
layers can realize the expected affine transformation. However, an acceptable
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Fig. 2: Affine transformation using networks based on the CWNL layer, full
connect layers and convolutional layers (show in the lower section): input image,
input control parameters (angle, scale, translation x,y); expected images from
testing set and images after learning on the training set containing 96-60000
examples with the binary cross-entropy loss.
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level of transformation quality is only achieved for a large training set. This
means an increase in the required size of the training well over two orders of
magnitude. Even in this case, the quality of the obtained images is much worse.
Global error measures also show (BCE, in Fig. 2) the advantage of the network
containing a single CWNL layer.
A network with CNL layers is better suited to image processing. However, a
big problem is the introduction to them of external control signals, the topology
of which is completely different from the topology of the processed patterns. A
modified convolutional autoencoder structure was used for this task, in which
external signals were delivered to the middle layers starting the block of the
pattern decoder (Fig. 2, the lower section). Using the network configured in
this way, slightly better results (Fig. 2) were obtained than the network using
only FC layers, with the same, high requirements for the size of the training set.

4 Conclusions

The conducted research has shown that networks using the CWNL layer can
effectively implement parameterized image transformations (and by generalizing
to any patterns with the spatial distribution of the data). Due to the relatively
small number of parameters describing such a layer, not related to the size of
the pattern, but the complexity of its content, small data sets are enough to
train a network with the CWNL layer. It can be assumed that with more
complex transformations the requirements for the size of the training set will
increase, but this size will be at least an order of magnitude smaller than in the
case of existing architectures. Of course, in real applications, the CWNL layer
controlled by external signals will not be a standalone component of the network,
but one of its many elements. However, its special properties give the chance
to obtain better results in the classical problems of classification, generation of
artificial patterns, compression, and possibly in applications that will be specific
to networks using this new layer type.
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