
Validating static call graph-based malware

signatures using community detection methods

Attila Mester1,2 and Zalán Bodó1

1- Babeş–Bolyai University - Faculty of Mathematics and Computer Science
Cluj-Napoca - Romania

2- Bitdefender
Cluj-Napoca - Romania

Abstract. Due to the increasing number of new malware appearing
daily, it is impossible to manually inspect each sample. By applying data
mining techniques to analyze the program code, we can help manual pro-
cessing. In this paper we propose a method to extract signatures from the
executable binary of a malware, in order to query the local neighborhood
in real time. The method is validated by applying community detection
algorithms on the common fingerprint-based malware graph to identify
families, and assessing these with evaluation metrics used in the field (e.g.
modularity, family majority, etc.). The signatures are obtained via static
code analysis, using function call n-grams and applying locality-sensitive
hashing techniques to enable the match between functions with highly
similar instruction lists.

1 Introduction

The number of new malicious programs implies the need to automate malware
analysis. This paper presents a method to extract signatures (or fingerprints)
of a malicious sample. These features can be used in an indexing engine to
query the neighborhood of a given sample in real time. In order to demonstrate
the capability of the signatures to cluster malware families, we build a common
fingerprint-based malware graph by applying community detection algorithms,
evaluating it using modularity, coverage, performance, etc. metrics. The signa-
tures are extracted based on the function call graph [1].

The novel idea in this work is the way the information is extracted from
local subroutines, without training a model, enabling the continuous analysis of
the daily incoming new samples. These local subroutines are represented using
a locality-sensitive hashing (LSH) method, based on their instruction n-gram
distribution. The final fingerprints consist of n-grams of such LSH codes.

The paper is structured as follows. In Section 2 we briefly overview the ex-
isting ideas and research results in the field, indicating our decision to work with
call graphs. Section 3 describes the process of obtaining the call graphs, the
extraction of the fingerprints, building the malware graph and detecting com-
munities in it. The paper ends with Section 4, presenting the results, concluding
the experiments and discussing future directions.

429

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



2 Related work

Applying machine learning methods to analyze malware has been extensively
studied in the literature. The authors of [2] categorize the different approaches
considering the objective (family/category/metamorphic variant selection and
similarity detection), type of the analysis (static, based on the binary file, e.g.
byte sequences, or dynamic, examining the malware’s behaviour in a sandbox
environment), and the algorithms applied. Investigating the bibliography of the
survey, the following conclusions can be drawn: the most prevalent approach is
to apply a supervised learning method, while the most frequently used features
are API/syscalls, byte sequences and API call graphs. Using the API graph
features, it is common to apply graph matching algorithms or calculate graph
edit distances (GED) [3]. Another approach is to build a feature vector of the
graph based on n-grams [4].

Convolutional neural networks are also successfully applied to detect patterns
in opcode and (dynamic) syscall sequences for identifying malicious code [5, 6].
Malware clustering based on locality-sensitive hashing was already experimented
in [7]. In [1], LSH is applied on local subroutines, using minhash signatures to
approximate similarity between the instruction sets of two subprograms.

In this paper we extract multiple fingerprints from the call graph, enabling
the continuous processing and clustering of new incoming samples, without the
need to retrain the underlying model; the nearest neighbors of a sample can
be determined based on the common fingerprints. The proposed signatures are
validated applying community detection algorithms on the common fingerprint-
based malware graph. Another key aspect of this paper is the validation of the
industrially used features of [8] as well.

3 N-grams for malware clustering

3.1 Generating the fingerprints

The fingerprints are extracted from the static call graph, obtained by IDA Pro 6
disassembler, combining the outputs of two APIs: GenCallGdl and GenFuncGdl.
In this paper we use the term call graph to name the result of processing the
outputs of these two APIs (details in [9]): a node is a function name (API/sys,
or local subroutine – containing its instruction list too), a link is a caller—callee
relation. A fingerprint is an n-gram in the resulting call graph: unigram meaning
a codeword for a subroutine, while bigram standing for a caller—callee codeword
pair, where possible combinations are local subroutine—local sub., local sub.—
DLL function, and local sub.—statically linked function. Only in case of DLLs
the function names themselves are used as codewords.

The codewords used for representing a subroutine are obtained via an LSH
algorithm [10], mapping the data points to hashes, such that similar points are
likely to be put in the same (or nearby) hash bucket, significantly reducing
the number of computations for finding the neighbors. In the present exper-
iments the random hyperplane-based method of [11] is used, that generates a

430

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



VXEB����'��

SXVK����HES

PRY�����>HES�DUJB&@���(��K

DQG�����>HES�YDUB�@���

MPS�����VKRUW�ORFB����&�

PRY�����HD[��>HES�YDUB�@

[RU�����HD[��>HES�DUJB&@

M]������ORFB�����&

SXVK����>HES�DUJB�@

PRY][���HD[��E\WH�SWU�>HES�YDUB��@

SXVK����HD[

SXVK����GZRUGB������

FDOO����VXEB����$�

DGG���HVS���&K

UHWQ
PRY�����HD[��>HES�DUJB�@

DGG�����HD[��>HES�YDUB�@

PRY�����DO��>HD[@

WUXH
IDOVH

*HQ&DOO*GO

*HQ)XQF*GO

,'$�3UR�� VXEB����'� VXEB������

(QDEOH:LQGRZ

$FWLYDWH$FW&W[

')6

FDOO�JUDSK

PHUJH

Q�JUDPV��/6+

ILQJHUSULQWV

FRPPXQLW\�GHWHFWLRQ

���

���

Fig. 1: Pipeline of generating the fingerprints and validating these by applying
community detection methods on the malware graph.

low-dimensional binary embedding of the data, in a way that the probability of
collision is “closely related” to the cosine similarity of the points. Our goal is
to reduce the dimensionality of the n-gram-based representation of the subrou-
tines, allowing slight differences in the instruction sequences of two functions.
Therefore, two programs can have common fingerprints even if they share only
a fraction of their instruction n-grams. Thus, some of the precision is sacrificed
for getting a higher recall [12], as we consider recall important in this scenario.

3.2 The malware graph

In order to measure the usefulness of the generated signatures, community de-
tection methods are applied on the common fingerprint-based malware graph –
where nodes represent the malware, edges indicate common fingerprints (Fig. 1).

We consider the following requirements: (i) the malware graph should consist
of dense components, with few edges between them – meaning the separation
of the malware groups from each other; (ii) ideally, the nodes of a component
should share the same family label. These dense (and homogeneous) components
are called communities in a network. The most prevalent community detection
algorithms are Clauset–Newman–Moore (CNM), Label propagation algorithm
(LPA), Louvain and Infomap [13], therefore we chose these for validating our
approach. In order to evaluate the topological properties of the obtained malware
graph, we calculate modularity, coverage and performance scores [13]. Since the
family distribution of the clusters is similarly important, we also measure the
majority percentage of the labels within each cluster.

4 Experimental results and discussion

In the experiments we used the following technologies and libraries: Python 3.6
(networkX library), IDA Pro 6, Graphviz, Gephi 0.9.2. We carried out exper-
iments considering the following: subroutine instruction n-grams (1–3-grams,
2–3-grams or trigrams); number of random hyperplanes (8 or 16); projection
partition (by projecting a vector onto a hyperplane and taking the sign of the
projection to generate the hash codewords, the distance information is lost –
enabling this parameter sets distance intervals of [0, 10], (10, 100], (100, 1000]
and > 1000, and symmetrically with negative signs, to use a finer partition of

431

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



(a)

(b)

Fig. 2: Comparison of modularity, coverage, performance (1st column), size
distribution (2nd column) and majority percentage (3rd column) of the labels
within communities in different malware graphs ((a) and (b)).

the space, thus obtaining finer hash codes); call graph n-grams (unigrams or bi-
grams, as described in Section 3.1). This resulted a total of 13 runs – discarding
some of the 16 hyperplanes option due to being computationally too expensive,
except the following: instruction 1–3-grams, projection partition disabled, call
graph bigrams. On the final graph, the following filters are applied: frequency
of fingerprints ([2, 80], [2, 100], [3, 100], [10, 100] or [10, 400]); edge weight (min-
imum 5, 10, 100, 200 or 1000). These parametrizations resulted in a total of
260 runs, some of them being discarded, as we chose a minimum requirement of
3000 nodes for the results to be comparable between each other.

4.1 Dataset used

The private Bitdefender dataset consists of 7977 samples from 254 families, a
family having 30.3± 41.96 samples on average – the mean and variance demon-
strate its imbalanced nature, typical in this domain. The number of subroutines
per sample is on average 1163 (median of 354 and maximum of 65 060) – summing
up to a total number of 9 284 242 subroutines with 650 225 unique mnemonic se-
quences (discarding instruction parameters like registers, addresses). The num-
ber of unique mnemonic n-grams in the dataset is as follows: 1783 unigrams,
61 910 bigrams, 559 835 trigrams, resulting in a 623 528 long sparse vector for
each subroutine (having 58± 70.64 nonzero values, on average).

4.2 Results and discussion

We calculated the above-mentioned evaluation metrics for different malware
graphs, based on the following fingerprints: (a) internal, industrially used fin-
gerprints [8], (b) fingerprints described in this paper: instruction 2–3-grams, 8
hyperplanes, projection partition, call graph bigrams, [2, 100] frequency filtering
and min. weight of 100 – yielding one of the best results in our experiments.

432

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



b > 0, 
a == 0

b == 0, 
 a > 0

4.4k
26k

89k

Pa
irs

2666

128

27

Avg. common fingerprints / pair

(x) (y) (z)

Fig. 3: Comparison of two call graphs – (x) and (y) – from the green bubble
scenario of (z) (the extra function group on the left graph shows a handful of
winsock2 functions).

In Fig. 2 we compare different metrics for the above configurations. The
first bar plot compares the topological properties (modularity, coverage, perfor-
mance) of the malware graph’s partition, using different community detection
algorithms. The second plot is the size histogram of the Louvain communities,
while the rightmost plot shows the majority label percentage of each community,
ranked according to their sizes. The blue, orange and green series represent the
size of the communities, number of different families, and the majority percent-
age across the families – plotted on a logarithmic scale. Ideally, the yellow and
green dots should remain close to 1, regardless of the growth of the blue series.

Based on the results depicted in Fig. 2, the following conclusions can be
drawn: (i) the industrially used fingerprints can cluster families with high mod-
ularity and majority label percentage scores; (ii) configuration (b) provides
similarly good results as (a); (iii) instruction n-grams, sequences yield better
representation than simple unigrams; not only the code of the subroutines, but
also the sequentiality of these subroutines can characterize malware families –
the best configurations resulted from selecting instruction bigrams and trigrams,
and bigrams from the call graph.

To conclude our experiments, we describe a case of two samples having the
same family within the same community, (x) and (y) (both of size of ≈ 800 kB).
In the call graph of (x) and (y) appear the exact same 384 DLL functions; (x)
has 2884 statically imported library functions, while (y) has 2522, of which 2345
are identical; in (x) there are 809 subroutines, while in (y) 749, sharing the
exact same code in 734 of these. Their similarity is reflected by the topology of
their call graphs (Fig. 3), and the number of common fingerprints too: (x) having
7698, (y) having 6942 fingerprints (based on (b)), of which 4878 are shared. This
is just one of thousands of cases where (a) does not yield common fingerprints,
while (b) does – the analysis of such cases is depicted in Fig. 3(z). Here we show
– regarding (a) and (b) – the number of virus pairs having the same family,
where one method does not yield common fingerprints, while the other does,
listing the avg. common fingerprints is such cases. The first column depicts two

433

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



cases: the upper bubble representing inter-community pairs, the lower showing
samples from identical communities. The second column refers to pairs from
different communities where (b) does not yield common fingerprints, while (a)
does – significantly smaller number than vice-versa. This plot demonstrates the
capability of our method to capture new, relevant information from the samples.

In this paper we present a novel method to extract fingerprints from static
analysis of a malicious sample, by applying LSH on its subroutines and gathering
n-grams from its call graph. After testing the proposed method we also evalu-
ate the usefulness of the industrially used fingerprints regarding their ability to
cluster families. Possible future directions include but are not limited to a more
comprehensive analysis of the call graph, revealing its topological structure, or
using convolutional networks for finding useful patterns.

Acknowledgments

This project was supported by Bitdefender. I would like to thank my colleagues
and managers, A. Mihalca, C. Oprişa, G. Cabău, O. Ardelean for their support.
I am grateful for the academic guidance of my supervisor, prof. dr. A. Andreica.

References

[1] M. Hassen and P. K. Chan. Scalable function call graph-based malware classification. In
CODASPY, pages 239–248, Scottsdale, AZ, USA, 2017. ACM.

[2] D. Ucci, L. Aniello, and R. Baldoni. Survey of machine learning techniques for malware
analysis. Computers & Security, 81:123–147, 2019.

[3] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel. Fast malware classification by
automated behavioral graph matching. In CSIIRW, pages 1–4, Oak Ridge, TN, USA,
2010. ACM.

[4] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware classification using
random projections and neural networks. In ICASSP, pages 3422–3426, Vancouver, BC,
Canada, 2013. IEEE.

[5] N. McLaughlin, J. Martinez del Rincon, B. Kang, et al. Deep Android malware detection.
In CODASPY, pages 301–308, Scottsdale, AZ, USA, 2017. ACM.

[6] F. Martinelli, F. Marulli, and F. Mercaldo. Evaluating convolutional neural network for
effective mobile malware detection. Procedia Computer Science, 112:2372–2381, 2017.

[7] C. Oprişa, M. Checicheş, and A. Năndrean. Locality-sensitive hashing optimizations for
fast malware clustering. In ICCP, pages 97–104, Cluj-Napoca, Romania, 2014. IEEE.

[8] V. I. Topan, S. V. Dudea, and V. D. Canja. Fuzzy whitelisting anti-malware systems and
methods, 2013. US Patent 8,584,235.

[9] A. Mester. Scalable, real-time malware clustering based on signatures of static call graph
features. Master’s thesis, Babeş–Bolyai University, Faculty of Mathematics and Computer
Science, Cluj-Napoca, Romania, 2020.

[10] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In STOC, pages 604–613, Dallas, Texas, USA, 1998. ACM.

[11] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC,
pages 380–388, Montréal, Québec, Canada, 2002. ACM.

[12] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.
Cambridge University Press, Cambridge, UK, 2008.

[13] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.

434

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  


	Introduction
	Related work
	N-grams for malware clustering
	Generating the fingerprints
	The malware graph

	Experimental results and discussion
	Dataset used
	Results and discussion




