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Abstract. Recent researches have been shown that models induced by
machine learning, in particular by deep learning, can be easily fooled by
an adversary who carefully crafts imperceptible, at least from the human
perspective, or physically plausible modifications of the input data. This
discovery gave birth to a new field of research, the adversarial machine
learning, where new methods of attacks and defence are developed contin-
uously, mimicking what is happening from a long time in cybersecurity. In
this paper we will show that the drawbacks of inducing models from data
less prone to be misled actually provides some benefits when it comes to
assess their generalisation abilities.

1 Introduction

In the last decades, Artificial Intelligence, and in particular Machine Learning,
has become pervasive in all aspects of our lives experiencing a fast process of
commodification and reaching the society at large. From self-driving cars to
smart IoT devices, almost every consumer application now leverages such tech-
nologies to make sense of the vast amount of data collected. In some tasks (e.g.,
vision and games) recent deep-learning algorithms have shown super-human
performance [1, 2]. For this reason, it has been extremely surprising to dis-
cover that such algorithms can be easily fooled by an adversary who carefully
crafts imperceptible, at least from the human perspective, or physically plau-
sible modifications of the input data forcing models to perceiving things that
are not there [3, 4]. Intrigued by this discovery and worried about its poten-
tial impact on the field a large number of researchers and stakeholders started
to study, understand, and address this problem developing proper mitigation
strategies. Despite such large interest, this challenging problem is still far from
being solved [3]. In fact new methods of attacks (i.e., adversarial attacks) and
defence (i.e., adversarial defense) are developed continuously, mimicking what is
happening from a long time in cybersecurity, giving birth to an entire new field
of research: the adversarial machine learning.

In this paper we propose a change of perspective. Instead of focusing on
the challenges posed by the tension between adversarial attackers and defenders
we focus our attention on its potential benefits. In particular, we will study
what happens when we try to estimate the generalisation capabilities of a model
learned in the classical setting, where no adversary is present, against the ones
of a model designed to be less prone to attacks and then less exposed to adver-
saries. Exploiting the Global Rademacher Complexity (GRC) theory and Local
Rademacher Complexity (LRC) theories [5, 6] we will show that the introduction
of a mechanism of defence in the learning phase of a model actually improve our
ability to accurately estimate its generalisation performance (i.e., the tightness
of the generalisation bound). In particular we will recall first some background
notions in Section 2, then we will study the problem and derive some results
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leveraging both on the Statistical Learning Theory in Section 3 and both on
experimental result on real data in Section 4 concluding the paper in Section 5.

2 Background

Let us consider the binary classification problem1 [7] under evasion attach [3].
Based on a random observation of x ∈ X ∈ Rd one has to estimate y ∈ Y ⊆ {±1}
by choosing a suitable hypothesis h : X → Ŷ in a set of possible ones H. Note
that choosing the right H is the so-called model selection problem [8] which is
out of the scope of this paper. The hypothesis h is subject to an adversary which
tries to fool the model into mistakes by modifying the observation x according
to a set of possible modifications B(x), namely

x̃∗ : arg supx̃∈B(x)[h(x̃) 6= h(x)], (1)

where the Iverson bracket notation is exploited. A learning algorithm selects
h ∈ H by exploiting a set of n labelled samples Dyn : {(x1, y1) , · · · , (xn, yn)}.
Dyn consists of a sequence of independent samples distributed according to µ over
X×Y. The generalisation error (i.e., the risk) Ly(h) = E(x,y)`(h(x), y) associated

to an hypothesis h ∈ H, is defined through a loss function ` : Ŷ × Y → [0, 1].
As µ is unknown, Ly(h) cannot be explicitly computed, but we can compute
the empirical error (i.e., the empirical risk) namely the empirical estimator

of the generalisation error L̂y(h) = 1
n

∑
(x,y)∈Dyn ` (h (x) , y). The purpose of

any learning procedure is to find the minimizer h∗ of the generalisation error
Ly(h) (h∗ = arg minh∈H Ly(h)) but since Ly(h) is unknown we have to estimate

h∗ exploiting an empirical estimator ĥ which is the empirical risk minimizer

(ĥ = arg minh∈H L̂y(h)). ĥ is effective when H is carefully tuned [8]. Neverthe-
less, in our case, we have a further level of complexity because of the adversary
which tries to fool the learned model. For this reason, we have to make the
learned model robust to adversarial perturbation using the now-classical ap-
proach of Adversarial Defence [3]. The idea is that the attack of Eq. (1) can
be reformulated as x̃∗ : arg supx̃∈B(x) `(h(x̃), y), and then we can consider the

now-classical problem of Adversarial Defence [3] h̃∗ : arg infh∈F L̃y(h) where

L̃y(h) = E(x,y) supx̃∈B(x) `(h(x̃), y) and its empirical estimator

ˆ̃
h : arg infh∈F

ˆ̃Ly(h), (2)

where
ˆ̃Ly(h) = 1

n

∑
(x,y)∈Dn supx̃∈B(x) `(h(x̃), y). Note that when B(x) = x we

have that L̃y(h) = Ly(h),
ˆ̃Ly(h) = L̂y(h), h̃∗ = h∗, and

ˆ̃
h = ĥ

3 Statistical Learning Theory

The main topic that we want to investigate in this work is how to estimate the

risk of ĥ and
ˆ̃
h showing that there is a benefit in assessing the generalisation

1Everything we will present can be easily generalised to the whole supervised learning
framework but, for simplicity and clarity of the notation, we will restrict the presentation to
the binary classification framework.

358

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



performance of
ˆ̃
h with respect to ĥ. Let us consider the case when Ŷ = [−1, 1]

and a symmetric loss function is exploited (i.e., `(·,−y) = 1 − `(·, y)). In this
setting it is possible to prove the GRC-based bound on the generalisation ability

of ĥ [5, 9]

P{Ly(ĥ) ≤ L̂y(ĥ)+R(H)+φ1(δ)}≥1−δ, (3)

where [6] R(H) = suph∈H
2
n

∑
(x,y)∈Dyn σi`(h(x), y) or, equivalently, R(H) = 1−

2 infh∈H L̂σ(h), is the GRC and where Dσn = {(x1, σ1), · · · , (xn, σn)}, P{σi =

+1} = P{σi = −1} = 1/2, L̂σ(h) = 1
n

∑
(x,σ)∈Dσn

` (h (x) , σ), and φ1(δ) is the

confidence term [5]. R(H) can be estimated with a single extraction of σ, with
multiple realisation of σ, or by computing Eσ [6].

Under the same setting it is possible to prove the LRC-based bound on the

generalisation ability of ĥ [10]

P
{
Ly(ĥ) ≤ L̂y(ĥ)+R

({
h
∣∣∣h ∈ H, L̂y(h) ≤ L̂y(ĥ)+φ2(δ)

})
+φ3(δ)

}
≥1−δ, (4)

where φ2(δ) and φ3(δ) are constant confidence terms that can be computed from
the data.

It is then possible, to also bound the generalisation ability of
ˆ̃
h via GRC-

based bound [11]

P
{
L̃y(

ˆ̃
h) ≤ ˆ̃Ly(

ˆ̃
h)+R̃(H)+φ1(δ)

}
≥1−δ, (5)

where R̃(H) = suph∈H
2
n

∑
(x,y)∈Dn σi supx̃∈B(x) `(h(x̃), y) or, equivalently, R̃(H)

= 1−2 infh∈H
ˆ̃Lσ(h) where

ˆ̃Lσ(h) = 1
n

∑
(x,σ)∈Dσn

supx̃∈B(x) `(h(x̃), σ). More-

over, with a a slightly more complex and technical proof that we do not report
because of space constraints, it is possible to prove the LRC-based bound on the

generalisation ability of
ˆ̃
h

P
{
L̃y(ĥ) ≤ ˆ̃Ly(ĥ)+R̃

({
h
∣∣∣h ∈ H, ˆ̃Ly(h) ≤ ˆ̃Ly(ĥ)+φ2(δ)

})
+φ3(δ)

}
≥1−δ. (6)

Note that, it is possible to easily observe and prove that [6]

R
({
h
∣∣h∈H,L̂y(h)≤L̂y(ĥ)+φ2(δ)

})
≤R(H), R̃

({
h
∣∣h∈H,ˆ̃Ly(h)≤ˆ̃

Ly(ĥ)+φ2(δ)
})
≤R̃(H), (7)

but, with a a slightly more complex and technical proof that we do not report
because of space constraints since it follows from [11], also that

R̃(H)≤R(H), R̃
({
h
∣∣h∈H,ˆ̃Ly(h)≤ˆ̃

Ly(ĥ)+φ2(δ)
})
≤R
({
h
∣∣h∈H,L̂y(h)≤L̂y(ĥ)+φ2(δ)

})
. (8)

The interpretation of Inequalities (7) and (8) are well exemplified in Figure 1
where, for a toy example, it is represented the same problem, with and without
an adversary, and it is reported the empirical minimizer, the GRC, and the
LRC. Basically when one takes into account the whole space of attach around
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(a) True Labels: Empirical
Error is zero with or without
the adversary.

(b) Random Labels: GRC is
1 without the adversary and
1/2 with the adversary.

(c) Random Labels: LRC
is 1/2 without the adversary
and 0 with the adversary.

Fig. 1: Toy Example: blue and red points are respectively negatively and pos-
itively labelled samples, lines are the minimisers in the space of linear models,
and circles around samples are the spaces of attach.

the labelled sample, and not just the labelled sample, this reduces the ability
of H to fit random labels (i.e., it reduces the complexity of H when measured
with the GRC or even more when measured with the LRC) much more than the
ability to learn good models (i.e., to fit meaningful labels).

What is not easy to derive and is not yet been proved, apart the naive In-
equalities (7) and (8) and the ones presented in [11], is how much, quantitatively,
can be the benefit in generalisation of the introduction of the adversary. This
analysis will be the subject of Section 4.

Note, finally, that all the bounds presented above can be generalised as fol-
lows, ∀ḣ ∈ H

P

{
L̇y(h1)≤ˆ̇Ly(h1)+

[
1−2 inf

h2∈
{
h2

∣∣h2∈H,ˆ̇L(h2)≤∆1(δ)
} ˆ̇Lσ(h)

]
+∆2(δ)

}
≥1−δ, (9)

namely the generalisation error of a function is bounded by the empirical error,
plus a complexity term which measures the size of the space (GRC or LRC),

plus a confidence term. In fact, if, for example, we set L̇ = L, ḣ = ĥ, ∆1(δ) = 1,
and ∆2(δ) = φ1(δ) we get the GRC-based bound on the generalisation ability of

ĥ. If, instead, we set L̇ = L̃, ḣ =
ˆ̃
h, ∆1(δ) =

ˆ̃Ly(ĥ) + φ2(δ), and ∆2(δ) = φ3(δ)

we get the LRC-based bound on the generalisation ability of
ˆ̃
h.

4 From Theory to Practice

Let us consider the case when h(x) = w · x where w ∈ Rd and the size of H
is regulated by the p-norm of the model weights ‖w‖p ≤ W where p regulates
the sparsity of the solution [12]. Let us also consider the case where B(x) is
the subset of Rd such that B(x) = {x̃ | ‖x̃ − x‖p ≤ B}. In this case the
value of p regulates the sparsity of the attack [13]. Note also that there is
a relation between sparsity of the regularizer and robustness to attacks [14].
For simplicity, in this section, we will set p = 2 in both regularisation and
attack. Since we are dealing with binary classification problems, the Hinge loss
` (h (x) , y) = max[0, 1− yh (x)] will be exploited [15]. Unfortunately, the Hinge
loss is not bounded and consequently the truncated Hinge loss will be exploited

` (h (x) , y) = max[0,min[1, 1−yh(x)
2 ]]

.
= db 1−yh(x)

2 c0e1.
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(a) 0 vs 1 (b) 5 vs 6

Fig. 2: Results on the Mnist dataset varying B ∈ [0, 3] (0 the case when no
adversary is present): EE, GRC, LRC, EE plus GRC, EE plus LRC, and TE.

In this setting, in order to find the ĥ (or
ˆ̃
h), and to estimate its generalisation

abilities with the GRC or the LRC-based bounds according to Eq. (9) we have
to solve the following problem

min w: ‖w‖≤W,∑n
i=1 maxx̃:‖x̃−xi‖<Bdb

1−yiw·x̃
2 c0e1≤r

∑n
i=1 max x̃:

‖x̃−xi‖<B
db 1−ciw·x̃

2 c0e1, (10)

where ci = yi, r = inf, and B = 0 for finding ĥ (or B > 0 for
ˆ̃
h), ci = σi, r = inf,

and B = 0 for computing the GRC (or B > 0 for the GRC with Adversarial
Defence), and ci = σi, r ≤ n, and B = 0 for finding the LRC (or B > 0 for the
LRC with Adversarial Defence). Problem (10) can be reformulated as follows

minw maxη1,··· ,ηn,γ1,··· ,γn
∑n
i=1

⌊⌈ 1−ciw·(xi+ηi)
2

⌋
0

⌉1
(11)

s.t.
∑n
i=1

⌊⌈ 1−yiw·(xi+γi)
2

⌋
0

⌉1≤r, ‖w‖≤W, ‖ηi‖≤B, ‖γi‖≤B, ∀i∈{1, · · ·, n}
which can be solved via alternating minimisation but, because the linearity of
the model, Problem (11) is equivalent to

minw
∑n
i=1

⌊⌈ 1+‖w‖B−ciw·xi
2

⌋
0

⌉1
, s.t.

∑n
i=1

⌊⌈ 1+‖w‖B−yiw·xi
2

⌋
0

⌉1≤r, ‖w‖≤W (12)

Using instead the kernel trick [16], namely working with linear models in a
reproducing kernel Hilbert space, the problem would become much more complex
to solve [3], but this is out of the scope of this paper.

Problem (12) allows to understand, in more realistic case, the meaning of
the Inequalities (7) and (8) and what has been reported in Figure 1 for a toy
sample. For this reason let us consider the Mnist dataset [17], a now classical
test bench in the adversarial context [3], which consists of 28 × 28 greyscale (0
white and 1 black) images of numbers from 0 to 9. In particular, we consider
the binary classification problems of recognising 0 against 1 (a simple case) and
5 against 6 (a more complex one) exploiting 100 sample from each class from
train and 1000 for test. Each experiment has been repeated 30 times to ensure
statistical validity of the results.

In Figure 2 reports, setting W = 1 and varying the amplitude of the space of
attach B, the Empirical Error (EE), the GRC, the LRC, the EE plus the GRC,
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the EE plus the LRC, and Test Error (TE). Note that EE plus the GRC, the EE
plus the LRC are basically the GRC- and LRC-based generalisation bounds of
Eq. (9) when the confidence terms (constants) are disregarded. Figure 2 shows,
analogously to Figure 1, that increasing B makes GRC (and even more LRC)
decrease, while less increasing the EE. This means that there is a trade-off,
namely an optimal size B, which allows to improve our ability to estimate the
final performance of the model (i.e., the tightness of the bound).

5 Conclusions

The scope of this paper was to show that inducing models from data less prone
to be fooled by an adversary, while posing many unresolved challenges, actually
provides some benefits when it comes to assess their generalisation abilities. In
particular, we studied the problem first from a theoretical perspective deriv-
ing some results leveraging both on the Statistical Learning Theory and then
practically with a series of numerical experiments. The results presented in the
paper are surely promising but require deeper theoretical and experimental anal-
ysis since they open a quite new perspective in the field of adversarial machine
learning that deserve to be further investigated.
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