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Abstract. We propose a computationally efficient procedure for elevated
mean detection on a connected subgraph of a network with node-related
scalar observations. Our approach relies on two intuitions: first, a signif-
icant concentration of high observations in a connected subgraph implies
that the subgraph induced by the nodes associated with the highest ob-
servations has a large connected component. Secondly, a greater detection
power can be obtained in certain cases by denoising the observations using
the network structure. Numerical experiments show that our procedure’s
detection performance and computational efficiency are both competitive.

1 Introduction

Given an undirected graph with scalar observations attached to its nodes, an
anomalous cluster can be defined as a connected subset of nodes carrying sig-
nificantly high observations [1]. Numerous real-world applications (e.g. sensor
networks, object detection in images or disease outbreak detection) have mo-
tivated extensive research on detecting such clusters. The standard approach
relies on scan statistics [2]: given a score function quantifying how significant a
potential cluster is, the maximum of this score function over the set of potential
clusters is used as a test statistic to detect the existence of a significant cluster.
Computing this maximum then becomes the main challenge, essentially reduc-
ing cluster detection to a combinatorial optimization problem. Although efficient
algorithms can be designed to find exact or approximate solutions to this prob-
lem, explicitly looking for the most significant cluster remains a computational
bottleneck, especially when dealing with large networks.

In contrast, we propose an optimization-free detection procedure relying
upon the following intuition: when removing all nodes except those carrying
the highest observations, the size of the largest remaining connected component
should be small in the absence of a cluster. On the other hand, when a cluster
is present, most of its nodes should remain in the thresholded graph, leading to
a significantly larger connected component. While thresholding-based detection
methods have already been studied [3, 4], our contribution is a more generic and
powerful test. In particular, we use a message passing scheme to denoise the
observations prior to thresholding, which can help make potential clusters stand
out. The resulting procedure, called the Diffusion-Percolation test, is described
in more detail and evaluated through numerical experiments in the next sections.
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2 Cluster Detection, Scan Statistics and Alternatives

Let G = (V, E) be an undirected and connected graph, where V = {v1, . . . , vn}
denotes the set of nodes of G and E ⊂ V × V is its edge set. Let A ∈ {0, 1}n×n
denote the adjacency matrix of G and M = D−1A denote its row-normalized
counterpart (where D is the diagonal matrix whose k-th diagonal coefficient is
the degree of vk). We define Λ as the set of subsets of V whose induced subgraph
in G is connected. For each node vk ∈ V, let Xk be a real-valued random variable
attached to vk. Consider the following hypothesis testing problem: let N (µ, σ2)
denote the normal distribution with mean µ and variance σ2, then the null

hypothesis is defined as H0 : Xk
i.i.d.∼ N (0, 1) and, for each S ∈ Λ,

HS : ∃µ > 0, ∀vk ∈ V, Xk
ind.∼ N

(
µ1{vk∈S}, 1

)
is one possible alternative (where 1{·} is the indicator function of an event). The
problem of cluster detection can then be formulated as

H0 vs. H1 =
⋃
S∈Λ

HS .

Note that we are only interested in detecting the presence of a cluster, thus our
procedure does not aim to reconstruct S after rejecting the null hypothesis.

The standard approach to this detection problem relies on scan statistics.
It first introduces a scoring function f : Λ → R, which, in the Gaussian case
considered here, is defined by

∀S ∈ Λ, f(S) =
1√
|S|

∑
vk∈S

Xk,

where |S| denotes the size of S. Given a threshold θ ∈ R, the null hypothesis is
then rejected if maxS∈Λ f(S) ≥ θ. This condition indeed ensures the existence
of a cluster in G which is significant at threshold θ. The detection problem
is then recast as a combinatorial optimization problem, namely maximizing f
over the class Λ. However, solving this optimization problem is computationally
intensive, especially for large graphs. Therefore, most contributions on prac-
tical cluster detection focus on exact or approximate computation of the scan
statistic through efficient algorithms. Several ideas have been explored, such
as considering only a subset of the class Λ [5] or solving a convex relaxation
of the problem [6]. Generic optimization methods have also been applied (e.g.
simulated annealing [7] or branch and bound algorithms [8]).

Despite these advances, explicitly looking for the most significant cluster
remains intrinsically expensive. Some authors thus proposed alternative ap-
proaches: Sharpnack et al. [9] introduced a simple approximation of the scan
statistic based on spectral properties of the Laplacian, and Langovoy and Wit-
tich [3] designed a thresholding-based test relying on percolation theory, which
was further studied by Arias-Castro and Grimmett [4]. Our work can be seen
as an extension of these methods.

400

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



3 The Diffusion-Percolation Test

We propose a two-step methodology to detect the existence of a cluster. First,
the signal X = [X1, . . . , Xn]> is denoised through a message passing scheme in
order to make potential clusters more visible. A percolation-based test statistic
is then computed and calibrated using bootstrap replications of the input signal.

Denoising the Signal – Diffusion Step. In order to make cluster detection eas-
ier, we first take advantage of the graph-structured nature of X to reduce the
noise. Specifically, the denoised signal X̃ is obtained by averaging the observa-
tion attached to each node with those of its neighbors, yielding

X̃ =
1

2
(M + In)X, (1)

where In is the n × n identity matrix. Intuitively, this transformation can be
expected to smooth out discrepancies between adjacent observations, thus elimi-
nating isolated anomalies while preserving clusters. Note that more sophisticated
tools from the field of graph signal processing [10] could be used to this end, but
they would incur higher computational costs which we seek to avoid here.

Looking for a Cluster – Percolation Step. Having computed the smoothed sig-
nal X̃, the next step is to look for traces of a potential cluster. To this end, define
v(1), . . . , v(n) as the nodes of G sorted in descending order of the smoothed ob-

servations (i.e. X̃(1) ≥ . . . ≥ X̃(n)). Then, for k ∈ {1, . . . , n}, let G(k) be the
subgraph of G induced by {v(1), . . . , v(k)}, and let C(k) denote its largest con-

nected component. Clearly,
∣∣C(1)

∣∣ = 1 and, since G is connected,
∣∣C(n)

∣∣ = n.
What happens between these two extremes depends upon the presence of a clus-
ter: under the alternative HS , the nodes inside of S should rank close to the top,
hence they should form a large connected component in G(k) for small values of
k. In contrast, under H0, high observations are not located in a specific region
of G, thus no large connected component should appear in the first thresholded
graphs. Therefore, the size of C(k) for small enough values of k can be used as a
test statistic. ”Small enough” is here defined in a data-driven way: define

K = min
{
k ≥ 2, E0

[∣∣C(k)

∣∣] ≥ √n} , (2)

where E0[ · ] denotes the expected value under H0. Then the test statistic is

TG(X) =
1

n(K − 1)

K∑
k=2

∣∣C(k)

∣∣− E0

[∣∣C(k)

∣∣]
V0

[∣∣C(k)

∣∣]1/2
, (3)

where V0[ · ] denotes the variance under H0.

Computation and Calibration of the Test Statistic. Two problems have not
been addressed yet: first, the statistic TG(X) depends on a priori unknown ex-
pected values and variances. Secondly, deciding whether to reject H0 based on
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TG(X) requires a calibration step: how likely is the test statistic to be at least
as high under the null hypothesis? Both issues are addressed by generating B
bootstrap replications of X, denoted {X1, . . . , XB}. Each one of these is ob-
tained by uniformly sampling Xb

1, . . . , X
b
n with replacement from X1, . . . , Xn. It

is then denoised using Eq. 1, yielding a smoothed signal X̃b from which we de-
rive a sequence Cb(1), . . . , C

b
(n) of largest connected components. We then compute

estimates for the unknown moments,

∀k ∈ {2, . . . , n}, µ̂(k) =
1

B

B∑
b=1

∣∣∣Cb(k)

∣∣∣ and σ̂(k) =

√√√√ 1

B − 1

B∑
b=1

(∣∣∣Cb(k)

∣∣∣− µ̂(k)

)2

,

which are plugged into Eq. 2 and Eq. 3, leading to

K̂ = min
{
k ≥ 2, µ̂(k) ≥

√
n
}
, T̂G(X) =

1

n
(
K̂ − 1

) K̂∑
k=2

∣∣C(k)

∣∣− µ̂(k)

σ̂(k)
.

The estimated test statistic is finally used to compute the empirical p-value

p̂ =
1

B

B∑
b=1

1{T̂G(Xb)≥T̂G(X)}, where T̂G(Xb) =
1

n
(
K̂ − 1

) K̂∑
k=2

∣∣∣Cb(k)

∣∣∣− µ̂(k)

σ̂(k)
.

This bootstrap-based approach makes our test usable even when the null distri-
bution of the observations is unknown, the only assumption being that they are
independent and identically distributed under H0.

In terms of computational cost, Eq. 1 can be computed in O(|E|) operations,
and the sequence C(1), . . . , C(n) is obtained using the Newman-Ziff algorithm [11]
(O(n) complexity). The observations need to be sorted beforehand and all these
operations are repeated B + 1 times, leading to O(B(n log n+ |E|)) complexity.

4 Experiments

We now evaluate our procedure on a synthetic dataset, which is generated as
follows: first, 50 random graphs of various sizes are sampled using the Kronecker
graph model [12]. More specifically, a single generator matrix Θ =[0.9 0.5;
0.5 0.3] is combined with 5 different numbers of Kronecker product iterations
(i ∈ {10, 11, 12, 13, 14}) to generate 10 graphs for each value of i. Only the largest
connected component of each graph is kept, yielding a connected graph with
approximately 2i nodes. We then generate 50 normal signals and 50 anomalous
signals for each graph, where each anomalous signal has elevated mean µ on a
random connected subgraph containing a proportion δ of the nodes.

We compare our procedure (Diffusion-Percolation, abbreviated DP) with 3
baselines: the first one, called Percolation Only (PO), is the proposed test with-
out the denoising step. The second one is the Upper Level Set scan statistic
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Fig. 1: Area under the ROC curve for each evaluated method, with different
combinations of values of i, δ and µ. Dashes indicate unavailable results due to
excessive computation times.

(ULS [5]), which is an approximation of the scan statistic relying on a reduc-
tion of the search space. Finally, we include the adaptive Graph Fourier Scan
Statistic (GFSS [9]), which approximates the scan statistic through the eigende-
composition of the Laplacian. DP, PO and ULS were implemented in Python,
with the most intensive parts translated into C using Cython [13]. As for the
GFSS, we used the open source Python implementation provided by the au-
thors. Each test is calibrated using 1 000 simulations (bootstrap replications of
the input for DP and permutations for other methods). Computations are run
on a Debian 10 machine with 128GB RAM and a 2.2GHz, 20-core CPU.

The detection performance of each test is evaluated through the area under
the Receiver Operating Characteristic (ROC) curve, and the results are displayed
in Figure 1. DP and PO perform best overall, with DP doing slightly better for
low δ and high µ. This suggests that the diffusion step is especially useful when
looking for small but strong clusters. This gain comes with a moderate loss
in performance for low µ and high δ, but ULS tends to perform best in this
setting anyway. As for computation times, Figure 2 shows that DP, although
slightly more expensive than ULS and PO, remains rather efficient, providing
an interesting trade-off between detection performance and computational cost.
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Fig. 2: Mean computation time (in seconds) for each evaluated method.

5 Conclusion

We propose an efficient and scalable statistical test for cluster detection in node-
valued networks, and demonstrate its effectiveness through numerical experi-
ments. Designing more sophisticated denoising schemes might be an interesting
lead for future research. A higher detection power might also be obtained by
looking for more complex anomalous patterns in the sequence

(∣∣C(1)

∣∣ , . . . , ∣∣C(n)

∣∣),
for instance by using functional anomaly detection methods.
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