
An Algorithmic Approach to Establish a Lower
Bound for the Size of Semiring Neural Networks

Martin Böhm1 and Thomas Schmid2,3

1- Universität Leipzig - Algebraische und logische Grundlagen der Informatik
Augustusplatz 10, Leipzig - Germany

2- Universität Leipzig - Machine Learning Group
Augustusplatz 10, Leipzig - Germany

3- Lancaster University in Leipzig
Nikolaistrasse 10, Leipzig - Germany

Abstract. Semiring neural networks have been introduced as a recurrent
neural network-type representation of weighted automata with the potential
to learn a recognizable series. Whether a given semiring neural network
actually can or cannot compute a recognizable series, however, depends on
the size of the network. Therefore, it is desirable to determine whether a
proposed size is too small before initiation of the training procedure. Here,
we present an algorithm that achieves this in polynomial time. As there is a
one-to-one correspondence between semiring neural networks and weighted
automata, our algorithm can also be used to derive lower bounds for the
size of a recognizing automaton. Our algorithm complements previous
work in this area as it works over commutative zero-sum-free semirings.

1 Motivation

Recurrent neural networks (RNNs) and weighted finite automata (WFAs) are
two distinct concepts in computer science that are linked by semiring neural
networks (SNNs) as introduced in [1]. While RNNs are usually considered over
the field of reals and trained via backpropagation through time [2], gradient-based
training algorithms fail for SNNs when instantiated over a semiring that cannot
be embedded in the reals, e.g. a tropical semiring. Particle-swarm optimization,
another popular training method for RNNs and proposed e.g. in [3], also fails
as the required update equations cannot be easily solved when the semiring
lacks inverse elements. Rank-based genetic algorithms such as Genitor II [4] are
more promising in a semiring milieu and their principal use in RNN training
has already been confirmed [5], yet convergence to an optimal solution may be
slow [6]. For performance reasons as well as to facilitate analysis of the resulting
automaton, one seeks to keep the size of the SNN/WFA as small as possible,
yet large enough to achieve the task. To this end, we present a polynomial time
algorithm that checks if the proposed SNN size is too small for training to succeed.
It can also be used to estimate lower bounds for the size of a WFA to recognize
a given series, a common problem studied in automata theory, cf. [7] and [8].

311

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

2 Theoretical Prerequisites

2.1 Commutative, Zero-Sum-Free Semirings

Given a finite alphabet Σ, the free monoid Σ∗ consists of all finite words over
Σ with concatenation as monoid operation and the empty word, ε, as neutral
element. We set Σ+ = Σ∗ \ {ε}. The length of a word w is denoted by |w|
and for a ∈ Σ, |w|a indicates the number of letters ”a” in w. A commmu-
tative semiring S = (S,

⊕
,
⊙
, 0, 1) is an algebraic structure where (S,

⊕
, 0)

(”addition”) and (S,
⊙
, 1) (”multiplication”) constitute Abelian monoids with

neutral element 0 and 1, respectively, such that multiplication distributes over
addition from the left and from the right, and 0 is absorbing for

⊙
. Moreover,

S is zero-sum-free if x
⊕

= 0 implies x = y = 0 for all x, y ∈ S. Examples of
commutative zero-sum-free semiring include the set N equipped with the usual
arithmetic as well as the tropical semirings where addition corresponds to taking
the maximum (or minimum) and multiplication is the ordinary addition, e.g.
(N ∪ {−∞},max,+,−∞, 0).

2.2 Semiring Neural Networks

Introduced in [1], SNNs are a special kind of RNN, expressively equivalent
to WFAs, where the weights are taken from a commutative semiring S =
(S,

⊕
,
⊙
, 0, 1). A SNN consists of four layers: input layer, gate layer, state

layer, and output layer. Intuitively, the nodes in the state layer correspond to the
states of an equivalent WFA; the number of nodes in this layer is called the size.

Figure 1 shows a schematic view of a SNN of size 2. Input and gate layer
as well as state and output layer are fully connected in a feed forward fashion
while there is limited forward and recurrent connectivity between gate and state
layer. The precise topology and function of the various node types of a SNN is
described in [1].

Fig. 1: Schematic view of a SNN of size 2 over Σ = {a, b}. Solid lines indicate
weights fixed to 1 while dashed ones are to be trained.

312

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

3 Determining the Network Size

3.1 Polynomial Equations

Due to their close relationship to WFAs, SNNs are fed recognizable series.
Whether training is eventually successful therefore depends on the size n of the
SNN - if it fails to compute the series, this is due to the number of nodes in the
state layer having been chosen too small. It is thus crucial to determine this
parameter n. Once n is known, the topology is fully specified as there are |Σ| · n
nodes in the gate and exactly one node in the output layer.

In the following, let f : Σ∗ → S be a recognisable series over a commutative,
zero-sum-free semiring S, N the SNN to compute f , Q = {1, . . . , n} the state
layer and G = {(ai, j) | ai ∈ Σ, j ∈ Q} the gate layer. By W (ai, j, k) we denote
the weight of the connection from node (ai, j) to node k. The value of node i in
the state layer after processing word v ∈ Σ∗ is denoted by q(i, v).

We consider the system of polynomial equations of degree at most |w| induced
by N .

Observation 1. The following equations hold for all a ∈ Σ, v = a1 . . . ak ∈ Σ∗,
and i ∈ Q:

W (a, 1, n) = f(a),

q(i, a) = W (a, 1, i),

q(n, v) = f(v),

q(i, a1 . . . ak) =
n∑

j=1

W (ak, j, i) · q(j, a1 . . . ak−1),

f(a1 . . . ak) =
n∑

i=1

W (ak, i, n) · q(i, a1 . . . ak−1) (1)

Finding the minimal size now reduces to checking the system of equations for
solvability as clearly as long as the equations yield a contradiction, the proposed
size is not large enough.

3.2 Construction of the Computation Tree

To algorithmically check whether a contradiction in equations of type 1 occurs,
we consider the computation tree of a word w ∈ Σ · Σ+, which is constructed
as follows. The root is labelled with w while each other node carries as label two
integers j, i. The tree has height |w|+ 1 and every node at height h ≤ |w| − 2
has exactly n children; the nodes at height h = |w| − 1 each have only one leaf as
child node. The node labelled (j, i) at height h represents weight (ah, j, i), and
multiplying the weights represented by the nodes alongside a path from root to
leaf in the tree corresponds to computing a summand in Equation 1. Observe
that computation trees of different words of the same length differ only in the
root as the represented symbol is implicit in a node’s height.

313

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Preparation. We define the support of a series as supp(f) = {w ∈ Σ∗ |
f(w) 6= 0}. The following preparatory steps have to be executed just once for a
given series. The output from step 1.1, an array of words, can then be treated as
a constant for recurring runs of the actual algorithm.

1.1 Find all w ∈ Σ+ of minimal length such that w ∈ supp(f).
1.2 For all a ∈ Σ such that f(a) = 0, set W (a, 1, n) = 0.

Algorithm. On input n, the algorithm now proceeds as follows:
2.1 For each u ∈ Σ+ \ supp(f) with |u| ≤ |w| (with w from step 1.1), inspect

the computation tree of u: every path in the computation tree of u must
contain at least one non-empty set of weights forced to 0.

2.2 For each w from step 1.1, prune the computation tree of w by deleting each
path containing a set of weights forced to 0 as determined in the previous
step. If all paths have been deleted, a contradiction has been found and
the size is too small.

For f 6= 0 (otherwise, the recognizing automaton is trivial), a w as in step
1.1 always exists. Since Σ∗ is countable, all qualifying words in step 1.1 can be
found by mere enumeration. Our algorithm uses (in step 2.1 above) the fact that
the underlying semiring is zero-sum-free and that 1 6= 0; thus, when a sum of
products evaluates to zero, we may conclude that each summand must have a
factor that vanishes. The correctness is shown in the following theorem.

Theorem 1. Let (S,+, ·, 0, 1) be a commutative, zero-sum-free semiring, let
f : Σ∗ → S denote a series, and let N be a S-neural network of size n. If the
computation tree algorithm on input n detects a word u ∈ Σ+ \ supp(f) with
|u| ≤ |u0| where u0 ∈ Σ+Σ+ is a word of minimal length such that u0 ∈ supp(f)
then N cannot compute f , that is, there is a word u1 ∈ Σ∗ such that f(u1) 6=
(‖N‖, u1).

Proof. We show that a contradiction inevitably arises in this situation. Let
u0 = a1 . . . ak ∈ Σ+Σ+ be minimal with the property f(u0) 6= 0. Since

0 6= f(u0) =
n∑

i=1

W (ak, i, n) · q(i, a1 . . . ak−1)

=
n∑

i=1

W (ak, i, n) ·
n∑

j=1

W (ak−1, j, i) · q(j, a1 . . . ak−2),

it suffices to show that for i ∈ {1, . . . , n}

n∑
j=1

W (ak−1, j, i) · q(j, a1 . . . ak−2) = 0. (2)

We prove Equation (2) by induction on n.

314

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

For n = 1, the statement is clear since

1∑
j=1

W (ak−1, j, i) · q(j, a1 . . . ak−2) = W (ak−1, 1, i) · q(1, a1 . . . ak−2)

= W (ak−1, 1, i) · f(a1 . . . ak−2)

= 0

where f(a1 . . . ak−2) = 0 since |a1 . . . ak−2| < |u0| and u0 was minimal with
f(u0) 6= 0.
For the inductive hypothesis, assume that (2) holds for a fixed n. Then:

n+1∑
j=1

W (ak−1, j, i) · q(j, a1 . . . ak−2)

=
n∑

j=1

(W (ak−1, j, i) · q(j, a1 . . . ak−2)) + W (ak−1, n+ 1, i) · q(n+ 1, a1 . . . ak−2)

IH
= 0 +W (ak−1, n+ 1, i) · f(a1 . . . ak−2)

= 0

Note that f(a1 . . . ak−2) = 0 because of the minimality of u0.

Figure 2 shows as an example the computation trees for a series f that counts
the number of X ′s after the last o. For n = 1, the only path available is closed
since f(o) = 0 forces the leaf (1, 1) to 0. On the other hand, for n = 2, one path
remains open, while the path containing weight (o, 1, 2) has been closed as this
weight is forced to 0 in step 2.2., leading to the pruned tree as shown. This is
consistent with the fact that a 2-state automaton can recognize f .

Fig. 2: Computation trees for the word w = oX and a SNN of size n = 1 (left)
and n = 2 (middle) as well as the pruned version (right) for the series f .

3.3 Complexity

We briefly review computational costs for executing the computation tree algo-
rithm. In the first preparatory step, we enumerate all words up to a certain
length; thus step 1.1 has cost O(|Σ|l) where l is the length of the qualifying words.

315

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Step 1.2 clearly has complexity O(|Σ|). While this preparation is expensive, note
that it only needs to be performed once. To determine the SNN’s required size
n, one will usually execute above algorithm several times for different values of
the input parameter n.

Theorem 2. The computation tree algorithm runs in polynomial time on input
n.

Proof. Let k denote the (constant) number of words from step 1.1. The for-loops
in steps 2.1 and 2.2 are executed |Σ|k and k times, respectively, and involve
in their body traversal of a perfect n-ary tree with an additional row of leaves.
(Since only entire paths are deleted in step 2.2, this, too, is essentially a tree
traversal as no node rearrangements are necessary.) Tree traversal is linear in

the number of nodes, which is nl−1 + nl−1
n−1 . Thus, the entire algorithm runs in

O(|Σ|k · (nl−1 + nl−1
n−1)), which is polynomial in the input parameter n.

4 Conclusions and Future Work

As training of SNNs is computationally expensive, it is desirable to know a-priori
how many nodes are needed for a SNN to compute a given series. We have
presented the computation tree to algorithmically check if the proposed size of
a semiring neural network is too small to be successfully trained, thus avoiding
training runs that are bound to be unsuccessful. An interesting open problem for
future research is whether not finding a contradiction in the computation tree
guarantees that the network can be successfully trained. This solvability of the
induced system of polynomial equations depends on the underlying semiring.

References

[1] Sebastian Bader, Steffen Hölldobler, and Alexandre Scalzitti. Semiring Artificial Neural
Networks and Weighted Automata. In Susanne Biundo, Thom W Frühwirth, and Günther
Palm, editors, 27th Annual German Conference on AI, pages 281–294, Ulm, Germany,
September 2004. Springer.

[2] Paul Werbos. Backpropagation Through Time: What It Does and How to Do It. Proceedings
of the IEEE, 78(10):1550–1560, October 1990.

[3] Anna S Rakitianskaia and Andries Petrus Engelbrecht. Training neural networks with PSO
in dynamic environments. In Proceedings of the 2009 IEEE Congress on Evolutionary
Computation, pages 667–673, Trondheim, Norway, May 2009. IEEE.

[4] Darrell Whitley and Timothy Starkweather. GENITOR II: a distributed genetic algorithm.
Journal of Experimental and Theoretical Artificial Intelligence, 2:189–214, 1990.

[5] Darrell Whitley and Thomas Hanson. Using genetic recombination to optimize neural
networks. In International Joint Conference on Neural Networks, page 591 vol.2. IEEE,
1989.

[6] Hiroaki Kitano. Empirical studies on the speed of convergence of neural network training
using genetic algorithms. AAAI’90: Proceedings of the eighth National conference on
Artificial intelligence, 2:789–795, July 1990.

[7] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Springer, Berlin, Germany, January 2009.

[8] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

316

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

	Motivation
	Theoretical Prerequisites
	Commutative, Zero-Sum-Free Semirings
	Semiring Neural Networks

	Determining the Network Size
	Polynomial Equations
	Construction of the Computation Tree
	Complexity

	Conclusions and Future Work

