
Functional Gradient Descent for n-Tuple
Regression

Rafael F. Katopodis1, Priscila V.M. Lima1,2 and Felipe M.G. França1 *

1- COPPE, 2- NCE, Universidade Federal do Rio de Janeiro - Brazil

Abstract. n-tuple neural networks have been in the past applied to a
wide range of learning domains. However, for the particular area of regres-
sion, existing systems have displayed two shortcomings: little flexibility in
the objective function being optimized and an inability to handle nonsta-
tionarity in an online learning setting. A novel n-tuple system is proposed
to address these issues. The new architecture leverages the idea of func-
tional gradient descent, drawing inspiration from its use in kernel methods.
Furthermore, its capabilities are showcased in two reinforcement learning
tasks, which involves both nonstationary online learning and task-specific
objective functions.

1 Introduction

Weightless, or n-tuple, neural networks are general learning models that have
been successfully employed in a variety of areas of learning [1]. Based on the
idea of memory elements as fundamental building blocks, these networks were
originally proposed for pattern recognition tasks [2], but later extended into
other domains, such as regression, in the form of the n-tuple regression network
(NTRN) [3] and derived models [4].

The existing NTRN-based architectures have shown promise in multiple com-
plex tasks but face two shortcomings that limit their application. The first is
that they are incapable of tracking nonstationary targets in an online learning
setting. The second is that they are fundamentally connected to a particular
error metric and unable to optimize different objective functions.

The structure of the present text is as follows: Section 2 points out the root
cause of the shortcomings in the NTRN and presents concepts from kernel meth-
ods that can be leveraged to surpass the limitations listed. Section 3 presents
a new n-tuple model that makes use of these concepts. Section 4 showcases the
model in tasks of policy search for reinforcement learning (RL), a domain that
gives rise to both nonstationary online learning and task-dependent objective
functions, and the paper is concluded in Section 5.

2 Fundamental concepts

2.1 n-Tuple regression networks

The n-tuple regression network is a model suitable for the approximation of
real-valued functions [3]. Unlike other RAM-based systems that precede it, such

*The authors thank CAPES and CNPq for financial support for this work.

505

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

as the WiSARD, for pattern recognition, or the SLLUP [5], for regression, the
NTRN is set apart by its storage of two values, a weight and a counter in each
memory position, and by its connection to kernel-based models.

For a set of examples {(xj , yj)|j = 1, . . . , T} sampled from the joint distri-
bution p(X,Y), the NTRN forms its estimate, f , by implicitly implementing a
Nadaraya-Watson kernel regression which, in turn, is an approximation of the
conditional expectation of Y (1), where k is a kernel function. This expectation
is the estimator that minimizes the mean squared error [6].

f(x) =

∑
j yjk(xj ,x)∑
j k(xj ,x)

≈ E[Y |X = x] (1)

This form of nonparametric regression is capable of representing highly non-
linear targets. The use of the NTRN allows for training and predicting in con-
stant time instead of proportional to the number of samples, as would be the
case if an explicit kernel representation were adopted.

The approximation of the conditional estimator, however, brings upon the
network two limitations. First, is the assumption that the metric of interest
to be optimized is the mean squared error. This can be contrasted with the
flexibility afforded by learning models that make use of gradient descent.

The second limitation concerns online learning. Although the NTRN is nat-
urally trained in a sample by sample manner, it cannot properly handle target
function drift. The root cause being that training samples are all equally taken
into account in the minimization of the mean squared error.

2.2 Functional gradient descent in kernel methods

Kernel methods, particularly for real-valued function approximation, are learn-
ing models of the form (2), where xj are points from training data, αj are weights
learned from it and k is a kernel, denoting a similarity relationship between two
inputs. These methods are deeply rooted in statistical learning theory and have
been used in a variety of domains [7]. Albeit generally used in a batch learning
context, where all training data is known a priori and the target function is
assumed stationary, kernel machines can also fit the online learning paradigm.

f(x) =
∑
j

αjk(xj ,x) (2)

One way this can be done is by gradient descent in the space of functions that
can be represented as (2). Let R[f,xt, yt] = c(xt, yt, f(xt)) be a risk functional
defined in terms of the loss of the model f for a sample (xt, yt). The method
consists of iteratively updating the model according to the functional gradient
∇fR (3). This gradient is defined as the linear term in an approximation of the
change in the value of R due to a perturbation in the model (4).

The last equality in (3) makes use of the chain rule, the evaluation functional
Ex[f] = f(x) and its gradient ∇fEx[f] = k(x, ·) to relate the gradient of the
risk functional to the partial derivative of the loss (5). With this last result, the

506

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

method may be understood as the iterative addition to the kernel expansion of
the model of kernels centered over newly arrived samples, also known as basis
functions, weighted by the gradient of the loss function.

ft+1(x) = ft(x) + ηt∇fR[f,xt, yt]

= ft(x) + ηt
∂

∂z
c(xt, yt, z)|f(xt)k(xt,x) (3)

R[f + εg,xj , yj] = R[f,xj , yj] + ε〈∇fR[f,xj , yj], g〉+O(ε2) (4)

∇fR[f,xt, yt] =
∂

∂z
c(xt, yt, z)|f(xt)∇fExt

[f]

=
∂

∂z
c(xt, yt, z)|f(xt)k(xt, ·) (5)

One shortcoming of this approach is the increase in time and space complexity
as more basis functions are added to the model. The NORMA algorithm [8]
handles this issue by truncation. Besides a loss, the risk functional also contains
a regularization term which, during an update step, results in the shrinking of
the weights of previously added basis functions. Based on these adaptive weights,
the algorithm only retains a fixed number of the most significant basis.

3 The functional gradient-inspired n-tuple network

The proposed model’s architecture follows along the lines of the RAM discrimi-
nator, used by WiSARD-based systems. It consists of a single layer of N RAM
neurons with vector-valued memory positions and takes as input an n×N -long
binary vector, called a retina. Each neuron is connected to n positions of the
retina, with such connections being established randomly and having no overlap.

We denote by τ [i](x) the tuple formed by input x for neuron i and by v
[i]
t (x)

the value addressed by the tuple formed by x for neuron i after t training sam-

ples. v
[i]
0 (x) = 0,∀x ∈ X , i = 1, . . . , N , implying that all memory positions are

initialized with zeros. For a sample (xt+1, yt+1), a differentiable loss function
c : X × R2 7→ R and a learning rate ηt, the model is updated according to the
rule (6) while its output after t training samples is computed as (7).

v
[i]
t+1(xt+1) = v

[i]
t (xt+1) + ηtδt, i = 1, . . . , N (6)

where δt =
∂

∂z
c(xt+1, yt+1, z)

∣∣
ft(xt+1)

ft(x) =
1

N

N∑
i=1

v
[i]
t (x) (7)

507

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

It is straightforward to show that the model proposed implements a kernel
machine. The demonstration closely mirrors the one given in [3]. First, the
content of a memory position at any point in time may be stated in terms of all

samples up to that time (8). M
[i]
t , here, serves as an indicator variable denoting

whether x addresses the same memory position as xt in neuron i.

v
[i]
t (x) =

t∑
j=1

ηjδjM
[i]
j (x) M

[i]
j (x) =

{
1 if τ [i](x) = τ [i](xj)

0 otherwise
(8)

N∑
i=1

M
[i]
t (x) = N − ρ(x,xt) = N

(
1− ρ(x,xt)

N

)
(9)

Furthermore, a relationship may be established between the indicator and a
measure of similarity between inputs (9), where ρ(a, b) =

∑N
i=1Jτ

[i](a) 6= τ [i](b)K
is the tuple distance between two inputs (and JpredicateK denotes the Iverson
bracket). Now, (6), (8), and (9) may be substituted into (7) to derive an equation
that relates the model’s output to a kernel:

ft(x) =
1

N

N∑
i=1

v
[i]
t (x)

=
1

N

N∑
i=1

[
v
[i]
t−1(x) + ηt−1δt−1M

[i]
t−1(x)

]
= ft−1(x) +

ηt−1δt−1

N

N∑
i=1

M
[i]
t−1(x)

= ft−1(x) + ηt−1δt−1k(xt−1,x), k(x,xt) =
(
1− ρ(x,xt)/N

)
(10)

Equation (10) highlights how the network’s output is a summation of basis
functions, of the form (2). Moreover, the output at time t relates to the output
at t− 1 in the same way as (3). The update rule, therefore, implicitly performs
functional gradient descent.

4 A reinforcement learning application

One application domain that involves both nonstationary online learning and
the optimization of particular objective functions is policy search in online RL.
That is the search for a probability distribution of actions conditioned on a state
that maximizes the long-term cumulative reward attained by an agent.

The proposed n-tuple system may be employed in this context by parame-
terizing a suitable probability distribution for the task at hand. For tasks with
binary action spaces (actions are either −1 or +1), one possible representation
makes use of the sigmoid function (11). For continuous action spaces, a natural

508

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

choice is the gaussian distribution (12), where the model determines the mean
vector. Σ is a predefined covariance matrix and 1/Z is a normalizing constant.

πbinary
f (a|s) =

1

1 + esign(a)f(s)
(11)

πcontinuous
f (a|s) =

1

Z
exp

{
− 1

2
(f(s)− a)ᵀΣ−1(f(s)− a)

}
(12)

The goal of searching for good policies can be framed as that of adjusting the
learning model that parametrizes the policy to maximize the value of the initial
state. This maximization can be performed numerically by gradient ascent and
the algorithms that do so are called policy gradient methods. One such method
is the REINFORCE algorithm [9], previously adapted to the functional gradient
setting in kernel machines [10] yielding the update rule (13). Gt is the return
from an episodic interaction of the agent with its environment.

ft+1 = ft + ηtGt∇f lnπf (a|s) (13)

As is shown in the previous section, the proposed n-tuple network implicitly
performs functional gradient descent. Therefore, it can realize the update rule
(13) by adopting R[f, at, st] = −Gt lnπf (at|st) as the empirical risk objective
to be minimized. For the binary and continuous action spaces policies, the
functional gradient of the log-probabilities are given by (14) and (15).

∇f lnπbinary
f (at|st) = −sign(at)(1− πf (at|st))k(st, ·) (14)

∇f lnπcontinuous
f (at|st) = Σ−1(at − f(st))k(st, ·) (15)

Two benchmark tasks from the Bullet physics engine [11] were used to show-
case the forms of policies parameterized by an n-tuple network: Cartpole, with
binary scalar actions, and reacher, with continuous vector actions. The cu-
mulative rewards attained by this approach throughout training, together with
baseline curves, can be seen in Figure 1. The baselines were obtained using
standard REINFORCE and multilayer perceptrons with two hidden layers, 32
ReLU units each. Recordings of the trained agents can be found in [12].

5 Conclusion

A new and more flexible n-tuple network architecture for regression has been
proposed. By leveraging the idea of functional gradient descent, this model can
be applied to nonstationary online learning problems with differential objective
functions, such as policy search in RL. Building upon the foundation of the
NTRN, this new architecture inherits the property of inferring values in constant
time. Explicit kernel methods, on the other hand, would have to resort to
techniques such as truncation to avoid an inference time-complexity linear in
the number of training samples. Finally, the network was showcased with two

509

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

(a) (b)

Fig. 1: Learning curves for the cartpole and reacher tasks, averaged across 10
runs with distinct random initializations. Curves are smoothed with a simple
moving average, with a 50-point window in (1a) and 200-point in (1b). Shaded
areas denote the 95% confidence interval. Learning rates provided in the legend.

policy search tasks. Ongoing work is being done in comparing the proposed
approach for RL to established ones, along dimensions such as sample efficiency
and stability. Future research could explore the use of adaptive learning rates
and curvature information to accelerate convergence.

References

[1] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V. Lima, and H. Morton. A brief
introduction to weightless neural systems. In ESANN, 2009.

[2] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In Papers
presented at the 1959 eastern joint IRE-AIEE-ACM computer conference, IRE-AIEE-
ACM 1959 (Eastern), Boston, Massachusetts, USA, December 1-3, 1959.

[3] A. Kolcz and N. M. Allinson. N-tuple regression network. Neural Networks, 9(5), 1996.

[4] L. L. Filho, L. F. R. Oliveira, A. L. Filho, G. P. Guarisa, L. M. Felix, P. M. V. Lima, and
F. M. G. França. Extending the weightless wisard classifier for regression. Neurocomput-
ing, 416:280–291, 2020.

[5] G. D. Tattersall, S. Foster, and R. D. Johnston. Single-layer lookup perceptrons. In IEE
Proceedings F (Radar and Signal Processing), volume 138, pages 46–54. IET, 1991.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to probability, 2nd Edition. Athena
Scientific Belmont, MA, 2008.

[7] A. J Smola and B. Schölkopf. Learning with kernels. MIT Press, 2002.

[8] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE
transactions on signal processing, 52(8):2165–2176, 2004.

[9] R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

[10] J. A. Bagnell and J. Schneider. Policy search in reproducing kernel hilbert space. Technical
Report CMU-RI-TR-03-45, Carnegie Mellon University, Pittsburgh, PA, November 2003.

[11] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016–2019. http://pybullet.org.

[12] Recordings of the trained agents on the cartpole and reacher environments.
https://youtube.com/playlist?list=PL0k075xYpLenHAv9E6riQgnZX1nX6ONv8.

510

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

