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1- Laboratoire de Mathématiques d’Avignon,
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2- Université Lumière-Lyon-II,
69676 Bron Cedex, France

Abstract. Deep neural nets have undergone tremendous improvements
in the last decade, which revolutionised the field of machine learning in a
broad and lasting manner, achieving unprecedented performance in such
diverse fields as image analysis, point cloud registration, natural language
processing and model free control. On the theoretical side, understanding
the underpinnings of deep learning remains a formidable challenge, despite
impressive breakthroughs in the last decade. One particularly interesting
new prospect is the analysis of the double descent phenomenon described
in Belkin et al. [2019], a counter-intuitive theory bringing new insight
on the performance of learning systems in the greatly over-parametrised
regime.The list of contribution to the understanding of the double descent
paradigm has grown substantially in the last two years, but all available
results in the literature mainly focus on the linear and the kernel setups.
In the present paper, we study the overparametrised part of the double
descent curve introduced in Belkin et al. [2019] and propose a new approach
to the study of benign overfitting in the setting of learning Sobolev maps.

1 Introduction

This paper aims to study the theoretical performance of deep neural networks
in the overparametrised regime. Understanding the striking success of deep
learning in so many applications has remained a formidable challenge since the
early days of the deep learning revolution. One of the very counter-intuitive
phenomena encountered in the field of deep learning is the fact that zero training
error can does not preclude good generalisation on unobserved data. Most recent
results in machine learning theory address this puzzling phenomenon via the
theory of random matrices for kernel methods, and therefore struggle to resolve
the interpolation/generalisation paradox for general deep learning architectures.
In this paper, we propose a novel analysis of the empirical risk minimisation
with the lens of perturbation theory and provide rigourous justifications for this
conundrum in generalisation theory.

Let us now describe our statistical model and survey the recent approaches
for the study of generalisation for overparametrised networks.
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1.1 Statistical setup

1.1.1 The observation model

Let Zi = (Xi, Yi) in Rd×R, i = 1, . . . , n be observations drawn from the following
model

Yi = f∗(Xi) + εi

i = 1, . . . , n, where we assume that the vectors Xi are random and i.i.d., taking
values in Rd and the noise vector ε = [ε1, . . . , εn]t is sub-Gaussian, with sub-
Gaussian constant denoted by Kε. The goal of machine learning is to estimate
f∗ based on the observation Z1, . . . , Zn.

1.1.2 Empirical risk minimisation

The estimation of f∗ will be based on restricting the search to a subset F of
functions of a Banach space B. The estimator will be chosen in the set of
stationary points of the empirical version of the risk R : F → R defined by

R(f) = E [`(Y, f(X))] ,

where ` : R × R → R satisfies `(y, y) = 0 for all y ∈ R and `(y, ·): R 7→ R
is a strictly convex twice continuously differentiable nonnegative function. Let
R̂n(f) denote the empirical risk defined by

R̂n(f) =
1

n

n∑
i=1

`(Yi, f(Xi)).

Then, the Empirical Risk Minimizer f̂ERM will be a solution to

f̂ERM ∈ argminf∈F R̂n(f). (1)

1.2 Generalisation of deep networks

Understanding generalisation is one of the greatest challenges in deep learning.
Brute force use of standard complexities from statistical learning theory often
lead to vacuous bounds. Some recent approaches, based on compression Arora
et al. [2018], Baykal et al. [2018], etc or PAC-Bayes techniques Laviolette [2017],
Guedj [2019] have recently proved useful for deep networks Dziugaite and Roy
[2017], Neyshabur et al. [2017]. The dependency on the number of layers was
discussed in Golowich et al. [2018] and refined results were recently obtained
in Wei and Ma [2019]. Relationships with kernels, called tangent kernels, were
discovered two years ago in Jacot et al. [2018], which opens the door to new
refined generalisation guarantees in certain regimes; but see also the discussion
in Chizat et al. [2019]. In the present paper, we take a different, perturbative,
route to the analysis of the generalisation problem.
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1.3 Intrinsic dimension of the data and relative distance between the
samples

Many recent works have studied the intrinsic dimension of various data sets aris-
ing in machine learning Costa et al. [2005], Hein and Audibert [2005], Amsaleg
et al. [2015], Ansuini et al. [2019], Mezard [2020]. Manifold learning is one way
of decribing the data space. One often considers that the data lives on a metric
measure spaces (X , dist, µ), where a set X is equipped with both a metric dist
and a measure µ. We assume that µ(X ) = 1 as in Clarkson [2006]. The count-
ing measure |A|, can thus be used for estimation purposes using concentration
of measure tools, when the data are independently identically distributed on X
with distribution µ. The information dimension is closely related to the point-
wise dimension αµ(x) for x ∈ X , also known as the local dimension or Hölder
exponent which is defined as

αµ(x) = lim
ε→0

logµ(B(x, ε))

log ε

It was shown in Cutler and Dawson [1989] that for all i = 1, . . . , n,

n
min
i′=1

‖x−Xi′‖2 = n−1/αµ(x)+o(1)

as n→∞. Similar observations were made by Camastra [2003], Clarkson [2006],
[Mezard, 2020, 50:08/1:34:37]. In the sequel, we will make the following assump-
tion.

Assumption 1 There holds

n
min
i,i′=1

‖Xi −Xi′‖2 ≥ cn−1/ν (2)

with probability larger than or equal to 1 − δ, for some positive constants c, ν
and for δ ∈ (0, 1).

The Holder exponent ν is usually interpreted as a surrogate for the intrinsic
dimension of the data manifold. E.g., this intrinsic dimension was estimated to
be less than 20 for the MNIST dataset in Hein and Audibert [2005].

2 Main results

2.1 A general bound for the ERM in a Banach space

Our first contribution is the following general error bound for minimisers of the
empirical risk in Banach spaces.

Theorem 1 Assume that f∗ belongs to a family F of functions in a Banach
space B. Set ` to be the `22 loss, i.e. `(y, z) = 1

2 (y − z)2 for all y, z in R. Let
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Assumption 1 hold. Let ψ denote the bump function

ψ(x) =


exp

(
1− 1

1−‖x‖22

)
if ‖x‖22 ≤ 1,

0 otherwise

(3)

and let ψσ = ψ(·/σ). Take any σ ≤ cn−1/ν such that the ball in B centered at
f∗ with radius 6Kε n‖ψσ‖B is included in F . Then, with probability larger than

1 − δ, there exists a mapping f̂ERM : Rd 7→ R which solves the empirical risk
minimisation problem (1) and which lies at a distance at most 6Kε n‖ψσ‖B from
the neural network f∗.

2.2 Application to deep neural networks

We will concentrate on the case of B being equal to the Sobolev space Wk,p(D)
on a compact domain D ⊂ (0, 1)d of Rd.

2.2.1 Deep networks

Traditional feedforward architectures implement a map as a sequence of affine-
linear transformations, denoted by Tl : RNl−1 → RNl , l = 1, . . . , L, followed by a
componentwise application of a non-linear function, denoted by % : R → R and
called activation function. The parameters defining the affine transformations
Tl are referred to as weights and will be denoted by W . Let

fl : RNl−1 → RNl , x 7→ % (Tl(x))

for l = 1, . . . , L− 1,

fL : RNL−1 → RNL , x 7→ TL(x)

and define

fW = fL ◦ fL−1 ◦ · · · ◦ f1.

Let F denote the subset of Wk,p consisting of deep neural networks.

2.2.2 Main result

Our main result concerning deep networks is the following

Theorem 2 Set ` to be the `22 loss, i.e. `(y, z) = 1
2 (y − z)2 for all y, z in R.

Let Assumption 1 hold. Assume that ‖f∗‖Wk,p(D) ≤ B for some k ∈ N and

p ∈ [1,+∞]. Let ψ denote the bump function (3) with σ ≤ 1
2cn
−1/ν and let

ψσ = ψ(·/σ). Assume that d, p, ν and n are such that

3Kεn
1−d/(νp)2

√
C Cψ πd/4 (6k)

3k

(
d7

4 exp(6)

)k/2
≤ B. (4)
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Then, for any s ∈ [0, 1], there exists a positive constant C = C(d, k,B, s)
such that with probability at least 1 − exp(−n), the class F of neural networks
parametrised by

(i) the number L of layers is bounded by

L ≤ c log2

(
ρ−k/(k−s)

)
(ii) the number d+

∑L
l=1Nl of neurons is bounded by

d+
L∑
l=1

Nl ≤ c ρ−d/(k−s) · log2

(
ρ−k/(k−s)

)
.

contains at least one neural network fŴ : Rd 7→ R with Ws,2(D)-distance at
most

Kεn
1−d/(2ν)2

√
C Cψ πd/4 (6k)

3k

(
d7

4 exp(6)

)k/2
(5)

to the solution set of the empirical risk minimisation problem (1) over the Sobolev
class Wk,2(D) and such that the estimation error is bounded by with

∥∥fŴ − f∗∥∥L2(D)
≤ ρ+ 3Kεn

1−d/(2ν)2
√
C Cψ πd/4 (6k)

3k

(
d7

4 exp(6)

)k/2
. (6)

Theorem 2 shows the existence of an almost ERM minimising deep neu-
ral network over a Sobolev class for Sobolev map estimation, with controlled
complexity. Our result shows that the error bound improves as the intrinsic
dimensionality ν decreases, and that the influence of ν is exponential. Our con-
clusion is that deep networks natural adapts to the intrinsic complexity of the
data.

3 Perspectives

We are currently extending our results to a deeper understanding of the double
descent phenomenon for general deep networks using our new approach.
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