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Abstract. Generalized Learning Vector Quantization methods are a
powerful and robust approach for classification tasks. They compare in-
coming samples with representative prototypes for each target class. While
prototypes are physically interpretable, they do not account for changes
in the environment. We propose a novel framework for the incorporation
of context information into prototype generation. We can model depen-
dencies in a modular way ranging from polynomials to neural networks.
Evaluations on artificial and real-world datasets show an increase in per-
formance and meaningful prototype adaptations.

1 Introduction

Prototype-based learning algorithms like the Generalized Learning Vector Quan-
tization (GLVQ) [I] constitute a powerful approach to classification tasks. They
feature a transparent decision-making process through a vivid distance metric
and physically interpretable prototypes. Furthermore, they tend to be robust
because of their inherent hypothesis margin maximization [2]. Nonetheless, pro-
totypes may give away representability to achieve better classification perfor-
mance [3]. Thus, this approach still has drawbacks. We will show that the
gap between interpretability and classification performance can be closed fur-
ther with the use of adaptive prototypes. It is intuitive to us as humans, that our
internal representation of the world changes in dependence on context. When we
classify elephants against tigers, our visual representation of an elephant might
change in light of the country we live in. Asian elephants e.g. are smaller than
African elephants. Therefore, we propose an extension of the GLV(Q algorithm
that utilizes prior knowledge about the context to adapt the representation for
target classes. This dependency can be modeled by any differentiable function.
We make use of simple polynomes to keep a level of interpretability and neural
networks (NN) as general approximators in the sense of [4].

The gap between interpretable but underfitting and non-interpretable but
highly performant models is a problem for safety-critical applications. The use
of NNs still constitutes a great challenge in many applications [5]. Several pub-
lications approach this problem by vigorously testing NNs, but capturing every
corner case is nearly impossible [6]. Work on adversarial attacks makes the
brittleness of their performance even more apparent [7]. On the other hand,
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prototype-based learning methods show greater robustness to attacks [§]. The
proposed approach offers a design choice with a high degree of interpretability
while allowing for highly non-linear dependencies on environmental factors.

Saralajew et al. combine GLVQ algorithms with NNs [8]. They propose
different uses of GLV(Q in neural network structures, e.g. as a final classification
layer. This approach uses the feature extraction capabilities of neural networks
but has the downside that prototypes are not physically interpretable. In con-
trast, the approach presented in this paper restricts prototypes to be physically
interpretable by direct comparison to incoming samples.

In the following sections, we introduce GLVQ algorithms and present the
theory of our new approach as well as remarks regarding model structure and
training process. We show the effectiveness of the proposed extension by con-
ducting experiments on different datasets. The results show an improvement in
classification performance and increased representability of the prototypes.

2 Introduction GLVQ

For the introduction to Generalized Learning Vector Quantization we define a
prototype w = [wq, wa, ..., wy,] for each target class. In this paper we assume one
prototype per class for readability. Samples are compared with the prototypes
by a distance metric d = d(x, w) (e.g. Euclidean or Mahalanobis). Furthermore,
we define a generalized distance y = (dt —d~)/(d" +d ™), where d* = d(x,w™)
is the distance to the closest matching prototype with class C = C(x) and
analogously d~ = d(x,w™) to the closest prototype with the wrong class. We
formulate loss function S(u) for N samples

N
S=3 flua) (1)

where f(u) is a monotonic activation function. During the training process,
prototypes are adapted by gradient-based optimization techniques such as SGD
or RMSprop. Hammer et al. introduced the addition of a relevance vector to
the distance calculation (GRLVQ) to allow the weighting of features [9]. The
distance calculation changes to

dy(x,w) = Z Me(zp — wy)? (2)

with the relevance vector A that is updated alongside the prototypes. Features
that allow a good separation between the target classes will be weighted higher.
While each feature weight is independent their sum is normalized to prevent
degeneration. Schneider et al. expand the relevance vector from GRLVQ to a
full importance matrix (GMLVQ) [10]. Therefore, the distance calculation is
extended with the symmetric and positive definite matrix A:

da(x,w) = (x = w)TAx — w) 3)
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If A is learned to be the covariance of the data, it represents the Mahalanobis
distance. Analogously to GRLVQ, the matrix A is updated and has to be nor-
malized afterwards that the condition ), A;; =1 holds.

3 Proposed Extension

To incorporate changes in the environment, we propose a formulation of proto-
type w = [w1, ..., w,] in dependence of an environment vector ¢ = [c1, ..., ¢
We write w = w(c) = w, +w,(c) with static prototype w, and a delta w,. The
prototypes, therefore, are no longer constant but adaptive. Thus, a generative
path is added to the GLVQ algorithm to adjust the static prototypes. Figure
illustrates the extension of the conventional GLV(Q algorithm to the proposed
adaptive one. Extensions are drawn as dashed lines, original model elements
with solid lines. The extension can be combined with all GLVQ classifiers (e.g.
GRLVQ or GMLVQ) by adding importances to the distance calculation.

I env-factor ’ Static Prototype ‘
SRTTane !
__--1C YII22., T T T __
| Generative path b 1 Add |
|

’ Distance calculation
1
Classification

Fig. 1: GLVQ (solid) and additional steps of the adaptive extension (dashed)

We propose two variants for the newly added generative part: one with a
polynomial (PN) and one with a NN. The PN variant constitutes a version with
lower computational cost, while the complex NN is able to achieve the best
performance. We formulate the polynomeaﬂ with degree [ as w, = 27;1 We,i =
S (aixci+byxc? + ... +1; * ch) with learned coefficient vectors a;, by, ..., 1;
for each environment factor ¢; and the NN as w, = NN (c)lﬂ The output w, is
added to the static prototypes.

3.1 Practical remarks and extension of the loss function

We introduce an auxiliary loss dg,, to ensure the representability of prototypes.
The extension is a mean-squared-error between prototypes w and samples x:

1 n
d= fmardmar + faumdauz daum = E Z(Iz - wi)2 (4)
1=1

IPolynomes in our case: one per feature and environment factor (not multivariate)
2 Architecture NN in our case: several dense layers with batch normalization

559



ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

with weighting factors foar, faus and maximum margin loss dp,q-. The results
show an improvement of convergence and stability of the training process. The
factors fiuar, faur Provide adjustable parameters to balance between maximum
margin and the level of representability.

Furthermore, the training process consists of two optimization phases: a
pretraining to reach representative prototypes (fmar = 0, fauz = 1) and margin
maximization training (fme- > 0). During margin maximization training, we
have to set a good balance between margin maximization and auxiliary loss.

4 Experiments

4.1 Artificial Datasets

We make use of three datasets with each three classes (n = 64) for demonstration
purposes: Constant signals (CS), variable signals with linear influence (VSL),
and variable signals with non-linear influence (VSNL). Figure [2a] visualizes sam-
ples of the classes of dataset CS. Class one follows a cosine function, class two a
straight line, and class three the upper half of a triangle. Uniform noise is added
to all samples. For datasets VSL/VSNL we introduce an artificial environment
factor ¢ = [¢1] (m = 1) over which the samples change their shape (class one:
amplitude, class two: offset, class three: slope). In the case of VSL, this change
is linear w.r.t. to c, in the case of VSNL non-linear.

= = Model CS | VSL | VSNL

30— T“%ngle‘ - - Line GLVQ 100 | 84.78 | 63.69
I IR Cosine GRLVQ 100 | 93.89 | 76.67
= 20 1 //\\ GMLVQ 100 | 95.11 | 80.22
i A-GLVQ (PN) 100 | 100 | 65.11
SO LU It A-GRLVQ (PN) | 100 | 100 | 79.89
. Lo hoa AR A-GMLVQ (PN) | 100 | 100 | 80.56

07 P A-GIVQ (NN) | 100 | 100 | 100

: A-GRLVQ (NN) | 100 | 100 | 100

\‘. — \' T
0 20 40 60  A-GMLVQ (NN) | 100 | 100 | 100
Feature [-]

(b) Results on data sets CS, VSN and VSNL
(a) Classes of data set CS (in percent)

Table 2b| compares the results of conventional and novel classifiers. All clas-
sifiers reach 100% on dataset CS. The conventional classifiers are not able to
fully separate dataset VSL since samples from different classes overlap (for dif-
ferent ¢). The novel adaptive classifiers can learn this dependency and still reach
100%. On dataset VSNL only the adaptive prototypes with NN are able to cap-
ture the non-linear dependencies. The PN underfits but can still improve its
results compared with the conventional algorithms. The experiments highlight
the importance of designing the right dependency on environment c.
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4.2 Real world data

Tires for passenger cars emit different sounds at different tread depths. This
sound can be captured with a microphone in the wheel arc. The target for this
dataset is to classify the tread depth in three levels: new, half-worn, worn. Raw
acoustic signals are filtered and transformed into the frequency domain via an
FFT (logarithmic energy spectrums, n = 64). We performed a clean training-
test-split. Figure shows how the features are highly dependent on vehicle
speed v (higher energies with higher speeds), so we define ¢ = [v] (m = 1).
The speed-adaptive prototypes w(v) of trained classifiers resemble a smoothed
version of the real-world data (figure . Table |1| compares the performance
of trained classifiers. We observe a great increase in classification performance
by the introduction of adaptive prototypes. For our example, tests with A-

Modelvariant Training [%)] Test [%]
GMLVQ 86.69 72.78
A-GMLVQ (PN) 95.06 80.83
A-GMIVQ (NN) 95.97 80.40

Table 1: Results on real world dataset

GLVQ and A-GRLVQ have not shown a similar increase in performance but
comparable prototypes like A-GMLVQ. The relevance vector collapsed to only
use one feature (only one non-zero element).
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(a) Spectrums from real world data (b) Prototypes on real world data

5 Conclusion

This paper proposes an extension of GLVQ variants that incorporate changes
of context in the classification process. An additional generative path trans-
fers learned static prototypes into different contexts. While arbitrary genera-
tive paths are possible, we introduce a polynomial and NN variant. The adap-
tive GLVQ variants have the advantage that they offer physical interpretability
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of learned prototypes while allowing complex adaptions to different contexts.
Model comparisons show improved performances for classification tasks with
changing environments, such as acoustic profile tread depth classification. Eval-
uations on artificial data sets narrow the advantages down to specific data set
properties. The performance increase of the novel approach in comparison to
non-adaptive GLVQ algorithms is steep for our application. Especially the A-
GMLVQ variant shows robust convergence properties.

We propose further research with the following focus. For one, the impor-
tance of different features could also vary with the environment. Thus, we pro-
pose to learn an adaptive projection in the sense of relevance learning A = A(c)
or matrix learning A = A(c). A second approach is the improvement of the com-
bination with relevance or tangent learning. While we did not reach satisfying
results so far, we are convinced that fitting regularization techniques could lead
to improvements. We provided our code as an open-source toolboxﬂ and propose
the application of the novel framework to other data sets and the reproduction
of performance increases.
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3A-GLVQ Python implementation: [https://github.com/graebe/aglvq
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