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Abstract. We propose Enhash, a fast ensemble learner that detects concept drift
in a data stream. A stream may consist of abrupt, gradual, virtual, or recurring
events, or a mixture of various types of drift. Enhash employs projection hash to
insert an incoming sample. Benchmark tests on 6 artificial and 4 real data sets
consisting of various types of drift show that Enhash is competitive with state-
of-the-art ensemble learners while being significantly faster. It also has moderate
resource requirements.

1 Introduction

A data stream environment is often characterized by large volumes of data that flow
rapidly and continuously. They are processed in an online fashion to accommodate data
that cannot reside in main memory. A streaming data environment is commonly used
for tasks such as making recommendations for users on streaming platforms, and real-
time analysis inside IoT devices. In such a stream, the underlying data distribution may
change, and this phenomenon is referred to as concept drift. Formally, the posterior
probability of a sample’s class changes with time. Consequently, the method must also
be able to adapt to the new distribution. To adapt to a new concept, the method may
require supplemental or replacement learning. Tuning a model with new information
is termed as supplemental learning. Replacement learning refers to the case when the
model’s old information becomes irrelevant, and is replaced by new information. A
shift in the likelihood of observing a data point & within a particular class when class
boundaries are altered, is called real concept drift. Concept drift without an overlap
of true class boundaries, or an incomplete representation of the actual environment, is
referred to as virtual concept drift. In virtual concept drift, one requires supplemental
learning, while real concept drift requires replacement learning [1]. The other com-
mon way to categorize concept drift is determined by the speed with which changes
occur [2]. Hence, drift may be incremental, abrupt or gradual. A reoccurring drift is
one that emerges repeatedly. Thus, in order to handle concept drift, a model must be
adaptive to non-stationary environments.

Several methods have been recently proposed to handle concept drift in a streaming
environment. The most popular of these are ensemble learners [3, 4, 5, 6, 7, 8]. As the
data stream evolves, an ensemble method selectively retains a few learners to maintain
prior knowledge while discarding and adding new learners to learn new knowledge.
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Thus, an ensemble method is quite flexible, and maintains the stability-plasticity bal-
ance i.e. retaining the previous knowledge (stability) and learning new concepts (plas-
ticity).

In this paper, we propose Enhash, an ensemble learner that employs projection hash
to handle concept drift. For incoming samples, it generates a hash code such that similar
samples tend to hash into the same bucket. A gradual forgetting factor weights the
contents of a bucket. Thus, the contents of a bucket are relevant as long as the incoming
stream belongs to the concept represented by them.

2 The Proposed Method

We propose Enhash, an ensemble learner, that employs hashing for concept drift de-
tection. Let z; € R? represent a sample from a data stream S at time step ¢ and let
y € {1,2,...,C} represent its corresponding concept, where C' is the total number of
concepts. Further, let us assume a family of hash functions H such that Vh; € H, it
maps z; to an integer value. The hash code h;(z;) is assigned to x; by hash function h;.
A bucket is a set of samples with the same hash code; both these terms are used inter-
changeably. The total number of samples in bucket A; () is denoted by Np, (4. Fur-
ther assume that NV samples have been seen and hashed from the stream so far. Amongst
N, N. samples belong to the concept class c such that Zilc N, = N. Based on the
evidence from the data stream seen so far, the probability of bucket h;(z:41) is given

Nl x . . . .
by p(hi(2¢41)) = % and prior for class c is given by p(c) = N./N. Assuming,
(Nhy(2:41))c Tepresents the samples of concept c in bucket 2y (2+41). Hence, the like-
lihood of x441 belonging to concept ¢ in bucket h;(x;41) is given by p(h;(x¢11)|c) =

N c aqe . . .
% and the probability of z;; belonging to class c is given by

_ ph(@e)le)ple)  (Nhy(wign))e
p(C‘hl ($t+1)) - p(hl(xt-i-l)) - Nhl(thrl) (l)

Equation (1) is simply the normalization of counts in bucket h;(xs41).
To predict the concept class of x4, an ensemble of L such hash functions can be
employed and the weight for each concept class is computed as

=L

pe =) log (1 +p(clh (th))) 2)

=1

and the concept class is predicted as

y = a a, De 3
N @

To accommodate an incoming sample of class c, the bucket is updated as
(thz(rf,+1))c = 1+(Nh4,(mf,+1))cvce {13"70} “4)

Enhash utilizes a simple strategy as described above to build an ensemble learner
for concept drift detection.
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Virtual drift Real drift

Fig. 1: Enhash accommodates both virtual and real drift.

In Enhash, the projection hash family is selected as a base learner. Here, a hash
function involves the dot product of hyperplane w") and sample ;. It is defined as

1 =
hi(xy) = Lm (Z (w§-l) * (24);) + bias(l)>J (3)

j=1

where, bin-width is quantization width, wg-l) and bias(") can be sampled from any de-

sired distribution. In our implementation, wy) ~ N(0,1) and
bias) ~ [—bin-width, bin-width).

Effectively, each h; (5) divides the space into equally spaced unbounded regions of
size bin-width (earlier referred to as bucket). Equation (1) computes the probability of
each concept class in a region. An ensemble of hash functions makes all the regions
bounded. The weight of a concept class in the bounded region is computed using (2).
An absolute value of concept class is assigned to each region in (3). Figure la shows
the arrangement of randomly generated hyperplanes. The solid line in Figure 1b shows
the inferred decision boundary (learned distribution) after an absolute assignment of
concept class to every bounded region. The dashed line in Figure 1b depicts the true
decision boundary (true distribution).

Assuming at time step ¢, Figure 1b shows the current stage of learner. At step ¢t + 1,
a new sample x;;; arrives (gray sample in Figure 1c). After updating the bucket (4),
the learned distribution shifts and moves towards the true distribution. Hence, Enhash
accommodates virtual drift present in the data stream.

Figure 1d depicts the real drift when the true distribution evolves. This requires for-
getting some of the previously learned information. Suppose that sample x4 A¢ hashes
to bucket h;(xy1a¢) at time say, ¢ + At. Assume that previously, z; from a different
concept, was hashed to this bucket. In order to accommodate forgetting (6), Enhash
employs a decay factor multiplier to p(c|h;(zi+a¢)) (2) while weighting a bounded
region.

=L

pe=3log (1+ 27 (el (s a0) (©)
=1

where ) is the decay rate. The update rule for the bucket (3) is also changed to reflect
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the new concept class as (Np,(z,,,))e = 1 + 272 (N, (5,,,))e- Setting X = 0 will
reduce these equations to the base case.

In order to break ties in p(c|h;(x+)), the class weight in the region is also weighted
by the distance of the sample z; from the mean of class samples in bucket h;(x), i.e.
meanf” (z0)

i=d

diste(z;) = | D ((xt)i - (meaniz(m))iy

=1

I=L
2~ A p(clhu (1))
o= 3 g (14 i)
b ; et diste(xy) )
and remaining ties are broken arbitrarily. Here, (z;); denotes the i-th feature of
sample x;.

3 Experimental Setup

Enhash’s performance was compared with some of the widely used ensemble learners.
These include Learn™*.NSE [3], Accuracy-Weighted Ensemble (AWE) [7], Additive
Expert Ensemble (AEE) [8], Online Bagging-ADWIN (OB) [9], Leveraging Bagging
(LB) [5], Online SMOTE Bagging (OSMOTEB) [4], ARF [6], Online CSB2 [4], Online
RUSBoost [4], and Streaming Random Patches (SRP) [10]. The implementation of
these methods is available in scikit-multiflow python package [11]. A fixed
value of estimators was used for all the methods. For methods AWE, Learn™ ' .NSE,
LB, and OB, the maximum size of window was set min(5000, 0.1 % n), where n is the
total number of samples. For the rest of the parameters, the default value was used for
all the methods.

4 Experimental Results

For all methods, the number of estimators is considered as 10. In addition, for Enhash
the bin-width was set to {0.1, 0.01} and A was set to 0.015. Table 1 compares the
performances in terms of error and KappaM using Interleaved Test-Train strategy. For
these measures, the performance of the proposed method was superior to AWE, AEE,
and Online RUSBoost on 8 data sets, Online CSB2, Learnt™.NSE, OSMOTEB, and
OB on 7 data sets, Learn++ and LB on 6 data sets, ARF on 5 data sets, and SRP on 4
data sets. The performance of Enhash supersedes all other methods for 3 data sets.
Other evaluation criteria are speed and RAM-hours (Table 2). For all data sets,
Enhash takes the least time. In terms of speed, Learn™ ™ .NSE is the closest competitor
of Enhash. In terms of accuracy, however, Enhash supersedes Learn™ ™t .NSE on the
majority of the data sets. Our findings were also consistent for error and KappaM. The
overall closest competitors of Enhash in terms of error and KappaM are SRP, ARF, LB,
and OB. Enhash’s speed and RAM-hours’ requirement are almost insignificant when
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Dataset Learnt™ LB OB OSMO- AWE AEE ARF Enhash Online Online  SRP
NSE -TEB CSB2 RUSBoost

(a) Error (in %)

transientChessboard 3.67 13.13 29.62 2428 89.78 8537 27.56 18.84  19.80 2395 39.53
rotatingHyperplane 24.13 24.65 15.08 19.75 1627 18.10 1640 3272 18.16 28.06 17.69
mixedDrift 39.46 16.71 23.63 2030 77.79 81.17 19.79 12.88 18.78 16.80 19.69
movingSquares 68.74 55.69 65.42 61.12 67.51 6723 58.54 1329 64.43 3534 19.40
interchangingRBF 7543 4.61 37.67 22.05 8349 8258 3.22 2.72 3.66 97.37  2.69
interRBF20D 7636  5.62 37.02 21.00 84.90 8235 239 11.30 3.48 9573 292
airlines 4292 4336 39.23 40.66 3849 39.17 33.09 41.66 43.04 4441 32.62
elec2 34.63 18.64 23.26 24.60 39.64 26.71 11.59 17.34 2294 1895 11.81
NEweather 29.20 27.20 20.84 2274 30.72 30.78 2143 2927 2327 29.20 21.23
outdoorStream - 933 3415 21.25 78.55 4245 26.12 8.75 33.85 62.73 34.62
(b) KappaM

transientChessboard 096 0.85 0.66 0.72 -0.03 0.02 0.68 0.78 0.77 0.73  0.55
rotatingHyperplane 052 051 0.70 0.60 0.67 064 0.67 0.34 0.64 044  0.65
mixedDrift 054 0.80 0.72 076 0.09 005 0.77 0.85 0.78 0.80 0.77
movingSquares 0.08 026 0.13 0.19 0.10 0.10 0.22 0.82 0.14 0.53  0.74
interchangingRBF 0.18 095 059 0.76 0.09 0.10 0.96 0.97 0.96 -0.06 097
interRBF20D 0.17 094 0.60 0.77 0.08 0.10 0.97 0.88 0.96 -0.04 097
airlines 0.04 0.03 0.12 0.09 0.14 0.12 0.26 0.06 0.03 0.00 0.27
elec2 0.18 056 045 042 0.07 037 0.73 0.59 0.46 0.55 0.72
NEweather 0.07 0.13 034 028 0.02 002 032 0.07 0.26 0.07 0.32
outdoorStream - 090 0.65 0.78 0.19 056 0.73 0.91 0.65 0.36  0.64

Table 1: For a given data set, the method with the best metric value is in boldface. Due
to implementation constraint, Learn™ T .NSE could not run for the outdoorStream data

set.
Dataset Learnt* LB OB OSMO- AWE AEE ARF Enhash  Online Online SRP
NSE -TEB CSB2 RUSBoost

Time (in hrs)

transientChessboard 0.287 8374 0983 13.623 0.181 0.570 0.481 0.099 1.081 1.008 1.238
rotatingHyperplane 0.199 14.022  6.957 114.615 0.198 0.660 1.318 0.067 2917 4.109 1.635
mixedDrift 0.627  27.408 7916 185.501 1.673  17.149 1.875 0.339 5.708 4.428 5.456
movingSquares 0.179 9.015 4.180 28.028 0.142 0.398 7.082  0.068 1.641 2202 0.812
interchangingRBF 0.185 8.298 1.106 7424 0376 1.048 0411 0.132 1411 1.346  2.005
interRBF20D 0.166  19.167 1.292 7.604 2.091 2.373 2.940  0.106 1.757 1.447 8.569
airlines 0.571 35.839 13.088 403.378 0.744 4357 2.405 0.182 6.553 8.906 3.388
elec2 0.020  7.575 1.777 14511 0.016  0.059 0.171 0.015  0.585 0.871 0.306
NEweather 0.008 0.590  0.183 1.326  0.013 0.020 0.080  0.006 0.219 0.282  0.140
outdoorStream - 0.069 0.093 0.162  0.047 0.129 0.067 0.004 0.191 0.182  0.293

RAM-hours

transientChessboard ~ 8.1e-05 8.0e-02 3.3e-04 5.5e-01 2.3e-04 5.5e-05 1.2e-03 4.4e-04 7.5e-04 7.7e-04 3.3e-04
rotatingHyperplane 5.6e-05 3.5e-01 1.7e-01 4.6e+01 5.8e-04 1.1e-04 3.4e-02 7.8e-05 1.7e-02 2.4e-02 1.2e-01

mixedDrift 4.9e-04 2.7e-01 2.9e-02 3.9e+01 2.5e-03 2.9e-03 1.3e-02 5.3e-03 1.3e-02 2.1e-03  2.3e-03
movingSquares 4.9e-05 8.7e-02 3.9e-02 2.3e+00 1.6e-04 2.3e-05 3.0e+00 1.2e-05 4.8¢-03 6.4e-03  1.4e-03
interchangingRBF 5.2e-05 8.2e-02 6.1e-04 2.4e-01 5.6e-04 1.8e-04 7.6e-04 9.9e-05 1.1e-03 6.1e-04  6.9e-04
interRBF20D 1.7e-04 7.8e-01 2.4e-03 1.1e+00 1.8e-02 3.3e-03 2.5e-03 1.0e-03 3.5e-03 1.5e-03 5.8e-01
airlines 1.3e-03  6.9e-01 2.4e-01 3.0e+02 1.7e-03 5.2e-04 9.3e-02 1.6e-01 3.1e-02 4.2e-02  1.7e-01
elec2 3.7e-06 1.4e-01 3.3e-02 1.3e+00 3.2¢-05 8.0e-06 1.4e-03 1.8e-05 2.7e-03 4.4e-03 5.5e-03
NEweather 7.0e-07 4.6e-03 1.4e-03 3.1e-02 1.2e-05 2.6e-06 1.2e-03 1.7e-04 1.1e-03 1.3e-03  4.5e-03
outdoorStream - 2.6e-04 1.4e-03 6.0e-03 1.4e-04 45e-04 9.4e-05 3.4e-05 5.8¢-03 3.2e-03 6.5e-04

Table 2: (a) The method with the fastest speed is highlighted for every data set. (b) The
memory consumption is measured in terms of RAM-hours. The method with the least
value of RAM-hours is highlighted for every data set.
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compared with other methods. OSMOTEB is the slowest when compared with all other
methods. The remaining methods AWE and AEE have inadequate performances as
compared to Enhash.

In summary, LB and ARF suffer in detecting incremental drifts. However, LB and
ARF have an overall satisfactory performance. Enhash performs relatively well on all
data sets. Enhash has a superior performance on a data set consisting of three different
kinds of drifts, namely incremental, virtual, and abrupt drifts.

5 Conclusions

We conclude that Enhash supersedes other methods in terms of speed since the algo-
rithm effectively requires only (1) running time for each sample on a given estimator.
In addition, the performance of Enhash in terms of error and KappaM is better or com-
parable to others for majority data sets. These data sets constitute abrupt, gradual,
virtual, and reoccurring drift phenomena. The closest competitor of Enhash in terms of
performance is ARF and SRP. Notably, Enhash requires, on an average 10 times lesser
RAM-hours than that of ARF and SRP.
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